Statistical Natural Language Processing

Recurrent and convolutional networks

Çağrı Çöltekin

University of Tübingen Seminar für Sprachwissenschaft

Summer Semester 2019

Why deep networks?

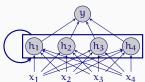
- We saw that a neural network with a single hidden layer is
- However, this is a theoretical result it is not clear how
- Successive layer may learn different representations
- · Deeper architectures have been found to be useful in many

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2019 2 / 27

Ç. Çöltekin, SfS / University of Tübingen

Recurrent neural networks



- Forward calculation is straightforward, learning becomes

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2019

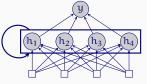
Summer Semester 2019 3 / 27

Deep ANNs RNNs CNNs

Ç. Çöltekin, SfS / University of Tübinger

• RNNs process sequences one unit at a time

• The earlier input affects the output through the recurrent



- a universal approximator
- many units one may need for the approximation

Deep ANNs RNNs CNNs

Recurrent neural networks

- Feed forward networks
 - can only learn associations
 - do not have memory of earlier inputs: they cannot handle
 - Recurrent neural networks are ANN solution for sequence learning
 - This is achieved by recursive loops in the network

Ç. Çöltekin, SfS / University of Tübingen

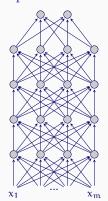
Deep ANNs RNNs CNNs

A simple version: SRNs Elman (1990)



- The network keeps previous hidden states (context units)
- The rest is just like a feed-forward network
- Training is simple, but cannot learn long-distance dependencies

Deep neural networks

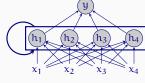


- Deep neural networks (>2 hidden layers) have recently been successful in many tasks
- They often use sparse connectivity and shared weights
- We will focus on two important architectures: recurrent and convolutional networks

C. Cöltekin, SfS / University of Tübinger

Why now?

- Increased computational power, especially advances in graphical processing unit (GPU) hardware
- · Availability of large amounts of data
 - mainly unlabeled data (more on this later)
 - but also labeled data through 'crowd sourcing' and other
- Some new developments in theory and applications



- Recurrent neural networks are similar to the standard feed-forward networks
- They include loops that use previous output (of the hidden layers) as well as the input
- somewhat tricky

Processing sequences with RNNs

links

C. Cöltekin. SfS / University of Tübingen Summer Semester 2019 6 / 27

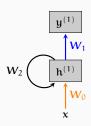
y^(t-1)

 $\mathbf{x}^{(t-1)}$

Unrolling a recurrent network Back propagation through time (BPTT)

h⁽¹⁾

Learning in recurrent networks



- · We need to learn three sets of weights: W_0 , W_1 and W_2
- Backpropagation in RNNs are at first not that obvious
- The main difficulty is in propagating the error through the recurrent connections

h(0)

 $\mathbf{x}^{(0)}$

h(t)

 $\mathbf{x}^{(t)}$

Unstable gradients

- A common problem in deep networks is unstable gradients
- The patial derivatives with respect to weights in the early layers calculated using the chain rule
- A long chain of multiplications may result in
 - vanishing gradients if the values are in range (-1, 1)
 - *exploding gradients* if absolute values larger than 1
- A practical solution for exploding gradients is called gradient clipping

Deep ANNs RNNs CNNs

 $\bullet\,$ Solution to vanishing gradients is more involved (coming

RNN architectures

 $\mathbf{x}^{(0)}$

Many-to-one (e.g., document classification)

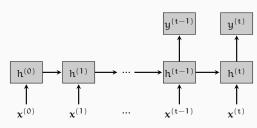
 $h^{(t)}$

 $\mathbf{x}^{(t)}$

 $x^{(t-1)}$

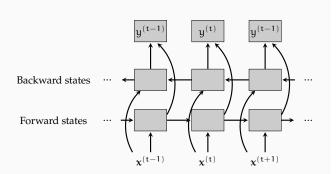
Deep ANNs RNNs CNNs

Many-to-one with a delay (e.g., machine translation)



Deep ANNs RNNs CNNs

Deep ANNs RNNs CNNs **Bidirectional RNNs**



Unstable gradients revisited

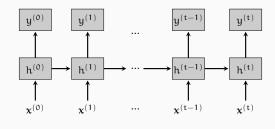
- We noted earlier that the gradients may vanish or explode during backpropagation in deep networks
- This is especially problematic for RNNs since the effective dept of the network can be extremely large
- Although RNNs can theoretically learn long-distance dependencies, this is affected by unstable gradients problem
- The most popular solution is to use *gated* recurrent networks

Deep ANNs RNNs CNNs

Note: the weights with the same color are shared.

RNN architectures

Many-to-many (e.g., POS tagging)



RNN architectures

Ç. Çöltekin, SfS / University of Tübinger

C. Cöltekin, SfS / University of Tübingen

• Convolutional networks are particularly popular in image

 $\bullet\,$ They have also been used with success some NLP tasks • Unlike feed-forward networks we have discussed so far,

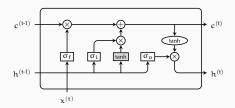
The hidden layer(s) receive input from only a set of

CNNs are also computationally less expensive compared

• A CNN learns features that are location invariant

Deep ANNs RNNs CNNs

Gated recurrent networks



- Most modern RNN architectures are 'gated'
- . The main idea is learning a mask that controls what to remember (or forget) from previous hidden layers
- Two popular architectures are
 - Long short term memory (LSTM) networks (above)
 - Gated recurrent units (GRU)

Convolutional networks

processing applications

neighboring units Some weights are shared

to fully connected networks

- CNNs are not fully connected

Blurring

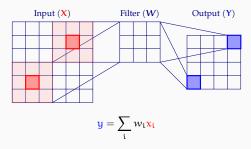
Example convolutions

• Edge detection

Deep ANNs RNNs CNNs

Convolution in image processing

- · Convolution is a common operation in image processing for effects like edge detection, blurring, sharpening, ...
- The idea is to transform each pixel with a function of the local neighborhood



Ç. Çöltekin, SfS / University of Tübingen

Ç. Çöltekin, SfS / University of Tübingen

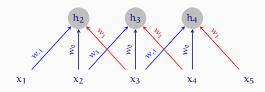
Deep ANNs RNNs CNNs

Learning convolutions

- Some filters produce features that are useful for classification (e.g., of images, or sentences)
- In machine learning we want to learn the convolutions
- Typically, we learn multiple convolutions, each resulting in a different feature map
- · Repeated application of convolutions allow learning higher level features
- The last layer is typically a standard fully-connected classifier

Ç. Çöltekin, SfS / University of Tübingen

Convolution in neural networks



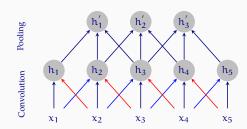
- Each hidden layer corresponds to a local window in the
- · Weights are shared: each convolution detects the same type of features

Ç. Çöltekin, SfS / University of Tübingen

Deep ANNs RNNs CNNs

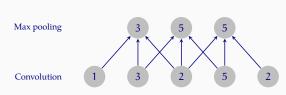
Deep ANNs RNNs CNNs

Pooling



- Convolution is combined with pooling
- Pooling 'layer' simply calculates a statistic (e.g., max) over the convolution layer
- · Location invariance comes from pooling

Pooling and location invariance



· Note that the numbers at the pooling layer are stable in comparison to the convolution layer

With successive layers of convolution and pooling, the size of the later layers shrinks • One way to avoid this is padding the input and hidden layers with enough number of

Ç. Çöltekin, SfS / University of Tübingen

zeros

Padding in CNNs

CNNs: the bigger picture classifier output Fully connected · At each convolution/pooling step, we often want to learn multiple feature maps · After a (long) chain of Pooling hierarchical features maps, the final layer is typically a fully-connected layer (e.g., Convolution softmax for classification) C. Cöltekin, SfS / University of Tübingen

Deep ANNs RNNs CNNs CNNs in natural language processing

- $\bullet\,$ The use of CNNs in image applications is rather intiutive
 - the first convolutional layer learns local features, e.g., edges

- In NLP, it is a bit less straight-forward

 - CNNs are typically used in combination with word vectors
 The convolutions of different sizes correspond to (word) n-grams of different sizes
 - Pooling picks important 'n-grams' as features for classification

Ç. Çöltekin, SfS / University of Tübinger

Summary

- · Deep networks use more than one hidden layer
- Common (deep) ANN architectures include:

CNN location invariance

RNN sequence learning

Next:

Wed lab

Fri N-gram language models

Ç. Çöltekin, SfS / University of Tübingen

Real-world examples are complex

The real-world ANNs tend to be complex

- Many layers (sometimes with repetition)
- Large amount of branching

Ç. Çöltekin, SfS / University of Tübingen

