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Information theory

Noisy channel model

noisy
channel
: :
10000010 10010010

« We want codes that are efficient: we do not want to waste
the channel bandwidth

« We want codes that are resilient to errors: we want to be
able to detect and correct errors

o This simple model has many applications in NLP,
including in speech recognition and machine translations
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Information theory

Coding example
binary coding of an eight-letter alphabet

letter code
90000

o We can encode an 8-letter a LO,OO,LOOO
. o b 00000001

alphabet with 8 bits using -
o B c 00000010
one-hot representation d 00000011
o Can we do better than “ 00000100
one-hot coding? £ 00000101
« Can we do even better? g 00000110
h 00000111
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Information theory

Why log?

o Reminder: logarithms transform exponential relations to
linear relations

o In most systems, linear increase in capacity increases
possible outcomes exponentially

— The possible number of strings you can fit into two pages is

exponentially more than one page
— But we expect information to double, not increase
exponentially
« Working with logarithms is mathematically and
computationally more suitable
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Information theory

Information theory

o Information theory is concerned with measurement,
storage and transmission of information

o It has its roots in communication theory, but is applied to
many different fields NLP

o We will revisit some of the major concepts
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Information theory

Coding example
binary coding of an eight-letter alphabet

letter code
« We can encode an 8-letter a 00000001
. . . b 00000010

alphabet with 8 bits using
one-hot representation ¢ LESLIILY
d 00001000
o Can we do better than & 00010000
one-hot coding? £ 00100000
g 01000000
h 10000000
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Information theory

Self information / surprisal

Self information (or surprisal) associated with an event x is
I(x) = lo; L = —logP(x)
g Plx) g

o If the event is certain, the information (or surprise)
associated with it is 0

o Low probability (surprising) events have higher
information content
« Base of the log determines the unit of information
2 bits
e nats
10 dit, ban, hartley
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Information theory

Entropy

Entropy is a measure of the uncertainty of a random variable:
H(X) == P(x)logP(x)
X

o Entropy is the lower bound on the best average code
length, given the distribution P that generates the data

« Entropy is average surprisal: H(X) = E[—1log P(x)]
o It generalizes to continuous distributions as well (replace
sum with integral)

Note: entropy is about a distribution,
while self information is about individual events

C. Goltekin,  SfS / University of Tiibingen Summer Semester 2019

1/19

3/19

4/19

6/19



Information theory

Example: entropy of a Bernoulli distribution

1
0.8
0.6
0.4
0.2
° 0 0.2 0.4 0.6 0.8 1

P(X=1)

H(X) in bits
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Information theory

Entropy: demonstration

increasing number of outcomes increases entropy

i
@
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Information theory

Entropy: demonstration

the distribution matters

_ 1 11 1 11 1_
H= —logzzleogz4 leogzzf—logzz =7
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Information theory

Entropy: demonstration
the distribution matters

__3 3_ 1 €1 _ 1 a1 _

H=—3log; 3 — 751082 76 — 75 1082 76 — 75 1082 75 = 1.06
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Information theory

Entropy: demonstration

increasing number of outcomes increases entropy

H=—-log1=0
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Information theory

Entropy: demonstration

increasing number of outcomes increases entropy
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Information theory

Entropy: demonstration
the distribution matters
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Information theory

Back to coding letters @

« Can we do better?
o No. H = 3 bits, we need 3

letter prob code

bits on average a % 000
b 1 001
c 1 010
d 1 o1
e 1 100
1
Uniform distribution has the . 8 )
maximum uncertainty, hence the g 1 110
maximum entropy. 8
h 3 111
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Information theory

Back to coding letters @

N otter?
o Can we do better? letter  prob code

e No. H = 3 bits, we need 3

bits on average a 1 0

o If the probabilities were b % 10

different, could we do c ] 110
better? ?

o Yes. Now H = 2 bits, we d 16 1110

need 2 bits on average e & 111100
1

Uniform distribution has the 64 Juted

maximum uncertainty, hence the g a1 111110
maximum entropy. 6]4

h a1
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Information theory

Pointwise mutual information

Pointwise mutual information (PMI) between two events is

defined as
P(x,y)

PMI(x,y) = log, POIP(Y)

o Reminder: P(x,y) = P(x)P(y) if two events are
independent PMI

0 if the events are independent
+ if events cooccur more than by chance
— if events cooccur less than by chance

« Pointwise mutual information is symmetric
PMI(X,Y) = PMI(Y, X)

« PMI is often used as a measure of association (e.g.,
between words) in computational/corpus linguistics
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Conditional entropy

Conditional entropy is the entropy of a random variable
conditioned on another random variable.

HIX[Y)= ) PHX|Y=y)
yey
= — ) Plxy)logP(x|y)
xeX,yeYy

e H(X|Y) = H(X) if random variables are independent

o Conditional entropy is lower if random variables are
dependent
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Information theory

Cross entropy

Cross entropy measures entropy of a distribution (P), under
another distribution (Q).

H(P,Q) = - P(x)logQ(x)

o It often arises in the context of approximation:

- if we intend to approximate the true distribution (P) with
an approximation of it (Q)

o It is always larger than H(P): it is the (non-optimum)
average code-length of P coded using Q

o It is a common error function in ML for categorical
distributions

Note: the notation H(X, Y) is also used for joint entropy.
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Information theory

Differential entropy

o Information entropy generalizes to the continuous
distributions

n(X) = — L p(x)log p(x)

o The entropy of continuous variables is called differential
entropy

o Differential entropy is typically measures in nats
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Information theory

Mutual information

Mutual information measures mutual dependence between two
random variables

MIX.Y) =Y Y P(x,y)log, P];f)‘,’,‘ﬁ;)
x oy

o Ml is the average (expected value of) PMI
o PMI is defined on events, MI is defined on distributions
o Note the similarity with the covariance (or correlation)

o Unlike correlation, mutual information is also defined for
discrete variables
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Information theory

Entropy, mutual information and conditional entropy

H(Y | X)
MI(X,Y)
H(X|Y) -
H(X,Y)
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Information theory

KL-divergence / relative entropy

For two distribution P and Q with same support,
Kullback-Leibler divergence of Q from P (or relative entropy of
P given Q) is defined as

P(x)
Q(x)

Dki(P[Q) = )_P(x)log,

o Dx measures the amount of extra bits needed when Q is
used instead of P

o Dke(PIQ) =H(P,Q) — H(P)
o Used for measuring difference between two distributions

« Note: it is not symmetric (not a distance measure)
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Information theory

Short divergence: distance measure

A distance function, or a metric, satisfies:
e d(x,y) =0
e d(x,y) =d(y,x)
e d(x,y)=0 & x=y
o d(x,y) < d(x,z) + d(z,y)

We will use distance measures/metrics often in this course.
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Further reading

o The original article from Shannon (1948), which started
the field, is also quite easy to read.
o MacKay (2003) covers most of the topics discussed, in a

way quite relevant to machine learning. The complete
book is available freely online (see the link below)

@ MacKay, David J. C. (2003). Information Theory, Inference and Learning Algorithms. Cambridge University Press. isen
978-05-2164-298-9. UrL: http://www.inference.phy.cam.ac.uk/itprnn/book.html

@ Shannon, Claude E. (1948). “A theory of c¢ ication”. In: B
pp. 379-423, 56.
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Information theory

Summary

o Information theory has many applications in NLP and ML

o We reviewed a number of important concepts from the

information theory

- Self information
— Pointwise MI
- Cross entropy

Next:
Mon ML intro / regression
Wed Lab

Fri Classification

G. Goltekin,

SfS / University of Tiibingen

- Entropy
— Mutual information
— KL-divergence
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