Some practical remarks

(recap)

Statistical Natural Language Processing

Mathematical background: a refresher

Çağrı Çöltekin

University of Tübingen
Seminar für Sprachwissenschaft
Summer Semester 2019

- Course web page:
http://sfs.uni-tuebingen.de/~ccoltekin/courses/snlp
- Please complete Assignment 0
- Assignment 1 will be released next week
- Reminder: there are Easter eggs (in the version presented in the class)

Linear algebra
Linear algebra is the field of mathematics that studies vectors and matrices.

- A vector is an ordered sequence of numbers

$$
\boldsymbol{v}=(6,17)
$$

- A matrix is a rectangular arrangement of numbers

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]
$$

- A well-known application of linear algebra is solving a set of linear equations

$$
\begin{aligned}
2 x_{1}+x_{2} & =6 \\
x_{1}+4 x_{2} & =17
\end{aligned} \Longleftrightarrow\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right] \times\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
6 \\
17
\end{array}\right]
$$

C. Çöltekin, SfS / University of Tübinge

Why study linear algebra?

- Insights from linear algebra are helpful in understanding many NLP methods
- In machine learning, we typically represent input, output, parameters as vectors or matrices (or tensors)
- It makes notation concise and manageable
- In programming, many machine learning libraries make use of vectors and matrices explicitly
- In programming, vector-matrix operations correspond to loops
- 'Vectorized' operations may run much faster on GPUs, and on modern CPUs
C. Çöltekin, SfS / University of Tübingen

Vectors

- A vector is an ordered list of numbers $\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots v_{n}\right)$,
- The vector of n real numbers is said to be in vector space $\mathbb{R}^{n}\left(\boldsymbol{v} \in \mathbb{R}^{n}\right)$

- In this course we will only work with vectors in \mathbb{R}^{n}
- Typical notation for vectors:
$\boldsymbol{v}=\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)=\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$
- Vectors are (geometric) objects with a magnitude and a direction

Geometric interpretation of vectors

- Vectors (in a linear space) are represented with arrows from the origin
- The endpoint of the vector $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$ correspond to the Cartesian coordinates defined by v_{1}, v_{2}
- The intuitions often (!) generalize to higher dimensional spaces

- Euclidean norm, or L2 (or L_{2}) norm is the most commonly used norm
- For $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$,

$$
\|v\|_{2}=\sqrt{v_{1}^{2}+v_{2}^{2}}
$$

$\|(3,3)\|_{2}=\sqrt{3^{2}+3^{2}}=\sqrt{18}$

- L2 norm is often written without a subscript: $\|\boldsymbol{v}\|$

Cc. Çöltekin, SfS / University of Tübingen

Practical matters Overview Linear algebra Derivatives \& integrals Summary
L1 norm

- Another norm we will often encounter is the L1 norm

$$
\begin{gathered}
\|v\|_{1}=\left|v_{1}\right|+\left|v_{2}\right| \\
\|(3,3)\|_{1}=|3|+|3|=6
\end{gathered}
$$

- L1 norm is related to Manhattan distance

Multiplying a vector with a scalar

- For a vector $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$ and a scalar a,

$$
a \boldsymbol{v}=\left(a v_{1}, a v_{2}\right)
$$

- multiplying with a scalar 'scales' the vector

Dot (inner) product

- For vectors $\boldsymbol{w}=\left(w_{1}, w_{2}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$,

$$
w \boldsymbol{v}=w_{1} v_{1}+w_{2} v_{2}
$$

or,

$$
\boldsymbol{w} \boldsymbol{v}=\|w\|\|v\| \cos \alpha
$$

- The dot product of two orthogonal vectors is 0
- $\boldsymbol{w} \boldsymbol{w}=\|\boldsymbol{w}\|^{2}$
- Dot product may be used as a similarity measure between two vectors

For vectors $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$ and

$$
\boldsymbol{w}=\left(w_{1}, w_{2}\right)
$$

$$
\text { - } \boldsymbol{v}+\boldsymbol{w}=\left(v_{1}+w_{1}, v_{2}+w_{2}\right)
$$

$$
(1,2)+(2,1)=(3,3)
$$

$$
\boldsymbol{v}-\boldsymbol{w}=\boldsymbol{v}+(-\boldsymbol{w})
$$

$$
(1,2)-(2,1)=(-1,1)
$$

Ç. Çöltekin, SfS / University of Tübingen
Summer Semester $2019 \quad 13$ / 38

Cosine similarity

- The cosine of the angle between two vectors

$$
\cos \alpha=\frac{\boldsymbol{v} \boldsymbol{w}}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|}
$$

is often used as another similarity metric, called cosine similarity

- The cosine similarity is related to the dot product, but ignores the magnitudes of the vectors
- For unit vectors (vectors of length 1) cosine similarity is equal to the dot product
- The cosine similarity is bounded in range $[-1,+1]$

Matrices

$$
\boldsymbol{A}=\left[\begin{array}{ccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \ldots & a_{1, m} \\
a_{2,1} & a_{2,2} & a_{2,3} & \ldots & a_{2, m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & a_{n, 3} & \ldots & a_{n, m}
\end{array}\right]
$$

- We can think of matrices as collection of row or column vectors
- A matrix with n rows and m columns is in $\mathbb{R}^{n \times m}$
- Most operations in linear algebra also generalize to more than 2-D objects
- A tensor can be thought of a generalization of vectors and matrices to multiple dimensions

Multiplying a matrix with a scalar

Similar to vectors, each element is multiplied by the scalar.

$$
2\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]=\left[\begin{array}{ll}
2 \times 2 & 2 \times 1 \\
2 \times 1 & 2 \times 4
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 8
\end{array}\right]
$$

Matrix multiplication

- if \boldsymbol{A} is a $n \times k$ matrix, and \boldsymbol{B} is a $k \times m$ matrix, their product \mathbf{C} is a $\mathrm{n} \times \mathrm{m}$ matrix
- Elements of $\mathrm{C}, \mathrm{c}_{\mathrm{i}, \mathrm{j}}$, are defined as

$$
c_{i j}=\sum_{\ell=0}^{k} a_{i \ell} b_{\ell j}
$$

- Note: $c_{i, j}$ is the dot product of the $i^{\text {th }}$ row of \boldsymbol{A} and the $j^{\text {th }}$ column of \mathbf{B}

Ç. Çöltekin, SfS / University of Tübinger Practical matters Overview Linear algebra Derivatives \& integrals Summary

Dot product as matrix multiplication

In machine learning literature, the dot product of two vectors is often written as

$$
w^{\top} v
$$

For example, $\boldsymbol{w}=(2,2)$ and $\boldsymbol{v}=(2,-2)$,
$\left[\begin{array}{ll}2 & 2\end{array}\right] \times\left[\begin{array}{c}2 \\ -2\end{array}\right]=2 \times 2+2 \times-2=4-4=0$

Transpose of a $n \times m$ matrix is an $m \times n$ matrix whose rows are the columns of the original matrix.
Transpose of a matrix \boldsymbol{A} is denoted with \boldsymbol{A}^{\top}.

$$
\text { If } \boldsymbol{A}=\left[\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right], \boldsymbol{A}^{\top}=\left[\begin{array}{lll}
a & c & e \\
b & d & f
\end{array}\right]
$$

Cc. Çöltekin, SfS / University of Tübingen

Matrix addition and subtraction

Each element is added to (or subtracted from) the corresponding element

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
2 & 2 \\
2 & 4
\end{array}\right]
$$

Note:

- Matrix addition and subtraction are defined on matrices of the same dimension

Matrix multiplication

(demonstration)

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 k} \\
a_{21} & a_{22} & \ldots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n k}
\end{array}\right) \times\left(\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 m} \\
b_{21} & b_{22} & \ldots & b_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
b_{k 1} & b_{k 2} & \ldots & b_{k m}
\end{array}\right) \\
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots a_{i k} b_{k j} \\
= \\
=\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 m} \\
c_{21} & c_{22} & \ldots & c_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n m}
\end{array}\right)
\end{gathered}
$$

Outer product

The outer product of two column vectors is defined as

$$
v w^{\top}
$$

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right] \times\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6
\end{array}\right]
$$

Note:

- The result is a matrix
- The vectors do not have to be the same length
- A square matrix in which all the elements of the principal diagonal are ones and all other elements are zeros, is called identity matrix and often denoted I

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Multiplying a matrix with the identity matrix does not change the original matrix

$$
\mathrm{I} A=A
$$

Transformation examples
identity

- Identity transformation maps a vector to itself
- In two dimensions:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \times\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Ç. Çöltekin, SfS / University of Tübingen

Transformation examples
rotation

$$
\begin{gathered}
{\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]} \\
{\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \times\left[\begin{array}{c}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]}
\end{gathered}
$$

Ç. Çöltekin, SfS / University of Tübingen

Inverse of a matrix

Inverse of a square matrix \boldsymbol{W} is denoted \boldsymbol{W}^{-1}, and defined as

$$
\mathbf{W} \mathbf{W}^{-1}=\mathbf{W}^{-1} \mathbf{W}=\mathbf{I}
$$

The inverse can be used to solve equation in our previous example:

$$
\begin{aligned}
\mathbf{W} x & =\mathbf{b} \\
\mathbf{W}^{-1} \mathbf{W} x & =\mathbf{W}^{-1} \mathbf{b} \\
\mathbf{I} x & =\mathbf{W}^{-1} \mathbf{b} \\
x & =\mathbf{W}^{-1} \mathbf{b}
\end{aligned}
$$

- Multiplying a vector with a matrix transforms the vector
- Result is another vector (possibly in a different vector space)
- Many operations on vectors can be expressed with multiplying with a matrix (linear transformations)

Ç. Çöltekin, SfS / University of Tübingen

Transformation examples

stretch along the x axis

$$
\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right] \times\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Ç. Çöltekin, SfS / University of Tübingen

Matrix-vector representation of a set of linear equations

Our earlier example set of linear equations

$$
\begin{aligned}
2 x_{1}+x_{2} & =6 \\
x_{1}+4 x_{2} & =17
\end{aligned}
$$

can be written as:

$$
\underbrace{\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]}_{w} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{c}
6 \\
17
\end{array}\right]}_{b}
$$

One can solve the above equation using Gaussian elimination (we will not cover it today).

Ç. Çöltekin, SfS / University of Tübingen

Determinant of a matrix

$$
\left|\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right|=\mathrm{ad}-\mathrm{bc}
$$

The above formula generalizes to higher dimensional matrices through a recursive definition, but you are unlikely to calculate it by hand. Some properties:

- A matrix is invertible if it has a non-zero determinant
- A system of linear equations has a unique solution if the coefficient matrix has a non-zero determinant
- Geometric interpretation of determinant is the (signed) change in the volume of a unit (hyper)cube caused by the transformation defined by the matrix

Eigenvalues and eigenvectors of a matrix

Derivatives

An eigenvector，v and corresponding eigenvalue，λ ，of a matrix \boldsymbol{A} are defined as

$$
A v=\lambda v
$$

－Eigenvalues an eigenvectors have many applications from communication theory to quantum mechanics
－A better known example（and close to home）is Google＇s PageRank algorithm
－We will return to them while discussing PCA and SVD （and maybe more topics／concepts）

Finding minima and maxima of a function
－Many machine learning problems are set up as optimization problems：
－Define an error function
－Finding the paramters minimizing the error
－We search for $f^{\prime}(x)=0$
－The value of $f^{\prime}(x)$ on other points tell us which direction to go（and how fast）
 position

C．．Çöltekin，SfS／University of Tübingen variables
－Derivative of a function $f(x)$ is another function $f^{\prime}(x)$ indicating the rate of change in $f(x)$
－Alternatively：$\frac{d f}{d x}(x), \frac{d f(x)}{d x}$
－Example from physics：velocity is the derivative of the
－Our main interest：
－the points where the derivative is 0 are the stationary points （maxima／minima／saddle points）
－the derivative evaluated at other points indicate the direction and steepness of the curve

Partial derivatives and gradient

－In ML，we are often interested in（error）functions of many
－A partial derivative is derivative of a multivariate function with respect to a single variable，noted $\frac{\partial f}{\partial x}$
－A very useful quantity，called gradient，is the vector of partial derivatives with respect to each variable

$$
\nabla f\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

－Gradient points to the direction of the steepest change
－Example：if $f(x, y)=x^{3}+y x$

$$
\nabla f(x, y)=\left(3 x^{2}+y, x\right)
$$

Ç．Çöltekin，SfS／University of Tübinger
－When integration is not possible with analytic methods，we resort to numeric integration
－This also shows that integration is＇infinite summation＇

Further reading

－A classic reference book in the field is Strang（2009）
－Shifrin and Adams（2011）and Farin and Hansford（2014） are textbooks with a more practical／graphical orientation．
－Cherney，Denton，and Waldron（2013）and Beezer（2014） are two textbooks that are freely available．
－A well－known（also available online）textbook for calculus is Strang（1991）
－Form more alternatives，see http：／／www．openculture．com／free－math－textbooks http：／／／inear．ups．edu／ https：／／wwu．math．ucdavis．edu／－1inear／．

Further reading (cont.)

```
Shifrin,Theodore and Malcolm R Adams (2011).Linear Algebra. A Geometric Approach. 2nd. W. H. Freeman. ISBN
    978-1-4292-1521-3.
Strang, Gilbert (1991). "Calculus". In: Wellesley-Cambridge press. urL:
    https://ocw.mit.edu/resources/res-18-001-calculus-online-textbook-spring-2005/textbook/
T- Strang,Gilbert (2009). Introduction to Linear Algebra, Fourth Edition.4th ed. Wellesley Cambridge Press. ISBN:
    9780980232714.
```

