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Why machine learning?

• Majority of the modern computational linguistic tasks and applications are
based on machine learning

– Tokenization
– Part of speech tagging
– Parsing
– …
– Speech recognition
– Named Entity recognition
– Document classification
– Question answering
– Machine translation
– …
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Machine learning is …

The field of machine learning is concerned with the question of how to construct computer
programs that automatically improve with experience. —Mitchell (1997)

Machine Learning is the study of data-driven methods capable of mimicking,
understanding and aiding human and biological information processing tasks.

—Barber (2012)

Statistical learning refers to a vast set of tools for understanding data.
—James et al. (2013)
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Supervised or unsupervised

• Machine learning methods are often divided into two broad categories:
supervised and unsupervised

• Supervised methods rely on labeled (or annotated) data
• Unsupervised methods try to find regularities in the data without any

(direct) supervision
• Some methods do not fit any (or fit both):

– Semi-supervised methods use a mixture of both
– Reinforcement learning refers to the methods where supervision is indirect and/or

delayed
In this course, we will mostly discuss/use supervised methods.
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Supervised learning
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Unsupervised learning

• In unsupervised learning we do not have
any labels

• The aim is discovering some ‘latent’
structure in the data

• Common examples include
– Clustering
– Density estimation
– Dimensionality reduction

• In NLP, methods that do not require
(manual) annotation are sometimes called
unsupervised

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2019 5 / 42



ML intro Models Parameter estimation Evaluation Non-linearity Overfitting & regularization Gradient descent Categorical predictors

Unsupervised learning

• In unsupervised learning we do not have
any labels

• The aim is discovering some ‘latent’
structure in the data

• Common examples include
– Clustering
– Density estimation
– Dimensionality reduction

• In NLP, methods that do not require
(manual) annotation are sometimes called
unsupervised

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2019 5 / 42



ML intro Models Parameter estimation Evaluation Non-linearity Overfitting & regularization Gradient descent Categorical predictors

Supervised learning
two common settings

An ML algorithm is called
regression if the outcome to be predicted is a numeric (continuous) variable
classification if the outcome to be predicted is a categorical variable
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Regression
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ML topics we will cover in this course

• (Linear) Regression (today)
• Classification (perceptron, logistic regression, ANNs)
• Evaluation ML methods / algorithms
• Unsupervised learning
• Sequence learning
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Machine learning and statistics

• The methods largely overlap (it was even suggested that both should be
collectively called ‘data science’)

• Aims differ
– In statistics (used as in experimental sciences) aim is making inferences using

the models
– In machine learning correct predictions are at the focus

• A more diverse set of models/methods are used in ML
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Machine learning and models

• A machine learning method makes its predictions based on a model
• The models are often parametrized: a set of parameters defines a model
• Learning can be viewed as finding the ‘best’ model among a family of models

(that differ based on their parameters)
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The linear equation: the regression model

y = a+ bx

a (intercept) is where the line
crosses the y axis.

b (slope) is the change in y as x is
increased one unit.
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The simple linear model
some terminology

yi = a+ bxi

y is the outcome (or response, or dependent) variable. The index i represents
each unit observation/measurement (sometimes called a ‘case’)

x is the predictor (or explanatory, or independent) variable
a is the intercept (called bias in the NN literature)
b is the slope of the regression line.

a and b are called coefficients or parameters
a+ bx is the model’s prediction of y (ŷ), given x
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Notation differences for the regression equation

yi = a+ bxi

• Sometimes, Greek letters α and β are used for intercept and the slope,
respectively

• Another common notation to use only b, β, θ or w, but use subscripts, 0
indicating the intercept and 1 indicating the slope

• In machine learning it is common to use w for all coefficients (sometimes you
may see b used instead of w0)

• Sometimes coefficients wear hats, to emphasize that they are estimates
• Often, we use the vector notation for both input(s) and coefficients:
w = (w0,w1) and xi = (1, xi)
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Notation differences for the regression equation

yi = β0 + β1xi

• Sometimes, Greek letters α and β are used for intercept and the slope,
respectively

• Another common notation to use only b, β, θ or w, but use subscripts, 0
indicating the intercept and 1 indicating the slope

• In machine learning it is common to use w for all coefficients (sometimes you
may see b used instead of w0)

• Sometimes coefficients wear hats, to emphasize that they are estimates
• Often, we use the vector notation for both input(s) and coefficients:
w = (w0,w1) and xi = (1, xi)
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Notation differences for the regression equation
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Regression models with multiple predictors

• The equation defines a
(hyper)plane

• With 2 predictors:
y = w0 +w1x1 +w2x2

• With more predictors it is more
convenient to use vector
notation: y = wx −2
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Parameter estimation

• In ML, we are interested in finding the best model based on data
• Learning is selecting a model from a family of models that differ in their

parameters
• Typically, we seek the parameters that reduce the prediction error on a

training set
• Ultimately, we seek models that do not only do well on the training data, but

also new, unseen instances
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Parameter estimation for regression
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Estimating regression parameters

• We view learning as a search for the
regression equation with least error

• The error terms are also called
residuals

• We want error to be low for the
whole training set: average (or sum)
of the error has to be reduced

• Can we minimize the sum of the
errors?
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yi = w0 +w1xi︸ ︷︷ ︸
ŷi

+ϵi
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Least-squares regression

• Find w0 and w1, that minimize the sum of the squared errors (SSE)

E(w) =
∑
i

ϵ2i =
∑
i

(yi − ŷi)
2 =
∑
i

(yi − (w0 +w1xi))
2

• We can minimize E(w) analytically

w1 =
σxy

σ2
x

= r
sdy

sdx
w0 = ȳ−w1x̄
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Short digression: minimizing functions

In least squares regression, we want to find w0 and w1 values that minimize

E(w) =
∑
i

(yi − (w0 +w1xi))
2

• Note that E(w) is a quadratic function of w = (w0,w1)

• As a result, E(w) is convex and have a single extreme value
– there is a unique solution for our minimization problem

• In case of least squares regression, there is an analytic solution
• Even if we do not have an analytic solution, if the error function is convex, a

search procedure like gradient descent can still find the global minimum
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What is special about least-squares?

• Minimizing MSE (or SSR) is equivalent to MLE estimate under the
assumption ϵ ∼ N(0,σ2)

• Working with ‘minus log likelihood’ is more convenient

E(w) = − logL(w) = − log
∏
i

e
−

(yi−ŷi)
2

2σ2

σ
√
2π

ŵ = argmin
w

(− logL(w)) = argmin
w

∑
i

(yi − ŷi)
2

• There are other error functions, e.g., absolute value of the errors, that can be
used (and used in practice)

• One can also estimate regression parameters using Bayesian estimation
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Regression with multiple predictors

yi =w0 +w1xi,1+w2xi,2 + . . .+wkxi,k︸ ︷︷ ︸
ŷ

+ϵi = wxi + ϵi

w0 is the intercept (as before).
w1..k are the coefficients of the respective predictors.

ϵ is the error term (residual).
• using vector notation the equation becomes:

yi = wxi + ϵi

where w = (w0,w1, . . . ,wk) and xi =
(
1, xi,1, . . . , xi,k

)
It is a generalization of simple regression with some additional power and
complexity.
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Evaluating machine learning systems

• Any (machine learning) system needs a way to measure its success
• For measuring success (or failure) in a machine learning system we need

quantitative measures
• Remember that we need to measure the success outside the training data
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Measuring success in Regression

• Root-mean-square error (RMSE)

RMSE =

√√√√ 1

n

n∑
i

(yi − ŷi)2

measures average error in the units compatible with the outcome variable.
• Another well-known measure is the coefficient of determination

R2 =

∑n
i (ŷi − ȳ)2∑n
i (yi − ȳ)2

= 1−

(
RMSE

σy

)2
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Assessing the model fit: R2

We can express the variation explained by a regression model as:

Explained variation
Total variation =

∑n
i (ŷi − ȳ)2∑n
i (yi − ȳ)2

• In simple regression, it is the square of the correlation coefficient between the
outcome and the predictor

• The range of R2 is [0, 1]
• 100× R2 is interpreted as ‘the percentage of variance explained by the model’
• R2 shows how well the model fits to the data: closer the data points to the

regression line, higher the value of R2
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Explained variation
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Dealing with non-linearity
• Regression estimation works because the regression equation is linear with

respect to parameters w
• Introducing non-linear combinations of inputs does not affect the estimation

procedure. The following are still linear models

y = w0 +w1x
2 + ϵ

y = w0 +w1log(x) + ϵ

y = w0 +w1x1 +w2x2 +w3x1x2 + ϵ

• In general, we can replace input x by a function of the input(s) Φ(x). Φ() is
called a basis function

• Basis functions allow linear models to model non-linear relations by
transforming the input variables
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Example: polynomial basis functions

1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

12

x

y

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2019 28 / 42



ML intro Models Parameter estimation Evaluation Non-linearity Overfitting & regularization Gradient descent Categorical predictors

Example: polynomial basis functions

1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

x

y

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2019 28 / 42



ML intro Models Parameter estimation Evaluation Non-linearity Overfitting & regularization Gradient descent Categorical predictors

Example: polynomial basis functions

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

x

y

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2019 28 / 42



ML intro Models Parameter estimation Evaluation Non-linearity Overfitting & regularization Gradient descent Categorical predictors

Example: polynomial basis functions
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Overfitting

• Overfitting is an important problem in ML, meaning the model has learned
peculiarities/noise in the data

• An overfitted model will perform well in training data, but fail on
new/unseen data

• Typically ‘more complex’ models are more likely to overfit
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Overfitting
demonstration through polynomial regression

1 2 3 4 5 6 7 8 9 10
0.7

0.8

0.9

1

polynomial order

r
2

train
test

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2019 30 / 42



ML intro Models Parameter estimation Evaluation Non-linearity Overfitting & regularization Gradient descent Categorical predictors

Preventing overfitting

• A straightforward approach is to chose a simpler model (family), e.g., by
reducing the number of predictors

• More training data helps: it is difficult to overfit if number of training
instances are (much) larger than the paramters

• There are other methods (one is coming on the next slide)
• We will return to this topic frequently during later lectures
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Regularized parameter estimation

• Regularization is a general method for avoiding overfitting
• The idea is to constrain the parameter values in addition of minimizing the

training error
• For example, the regression estimation becomes:

ŵ = argmin
w

∑
i

(yi − ŷi)
2

• The new part is called the regularization term, where λ is a hyperparameter that
determines the effect of the regularization.

• In effect, we are preferring small values for the coefficients
• Note that we do not include w0 in the regularization term
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L2 regularization

The form of regularization, where we minimize the regularized cost function,

J(w) + λ∥w∥2

is called L2 regularization.
• Note that we are minimizing the L2-norm of the weight vector
• In statistic literature L2-regularized regression is called ridge regression
• The method is general: it can be applied to other ML methods as well
• The choice of λ is important
• Note that the scale of the input becomes important
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L1 regularization

In L1 regularization we minimize

J(w) + λ

k∑
j=1

|wj|

• The additional term is the L1-norm of the weight vector (excluding w0)
• In statistic literature the L1-regularized regression is called lasso
• The main difference from L2 regularization is that L1 regularization forces

some values to be 0 – the resulting model is said to be ‘sparse’
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Regularization as constrained optimization

L1 and L2 regularization can be viewed as minimization with constraints
L2 regularization

Minimize J(w) with constraint ∥w∥ < s

L1 regularization

Minimize J(w) with constraint ∥w∥1 < s
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Visualization of regularization constraints
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Visualization of regularization constraints
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Regularization: some remarks

• Regularization prevents overfitting
• The hyperparameter λ needs to be determined

– best value is found typically using a grid search, or a random search
– it is tuned on an additional partition of the data, development set
– development set cannot overlap with training or test set

• The regularization terms can be interpreted as priors in a Bayesian setting
• Particularly, L2 regularization is equivalent to a normal prior with zero mean
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Gradient descent for parameter estimation

• In many ML problems, we do not have a closed form solution for finding the
minimum of the error function

• In these cases, we use a search strategy
• Gradient descent is a search method for finding a minimum of a (error)

function
• The general idea is to approach a minimum of the error function in small steps

w← w− η∇J(w)

∇J is the gradient of the loss function, it points to the direction of the maximum
increase

η is the learning rate
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Gradient descent with single parameter

• For a single parameter, gradient is a
one-dimensional vector

• The direction of gradient is towards
the maximum increase

• We take steps proportional to
−∇J(w)

• Steeper the curve, the larger the
parameter update

w

J(w)
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Gradient descent with single parameter
X

w1

w2

J(
w
)

Objective function

w2

w
1

Negative gradients
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Categorical predictors
• Categorical predictors are represented as multiple binary coded input

variables
• For a binary predictor, we use a single binary input. For example, (1 for one of

the values, and 0 for the other)

x =

{
0 for male
1 for female

• For a categorical predictor with k values, we use one-hot encoding (other
coding schemes are possible)

x =


(0, 0, 1) neutral
(0, 1, 0) negative
(1, 0, 0) positive
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Summary

What to remember:

• Supervised vs. unsupervised learning
• Regression vs. classification
• Linear regression equation
• Least-square estimate

• MSE, R2

• non-linearity & basis functions

• L1 & L2 regularization (lasso and
ridge)

Next:
Mon classification
Wed exercises
Fri classification / ML evaluation
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Additional reading, references, credits
• Hastie, Tibshirani, and Friedman (2009) discuss introductory bits in chapter

1, and regression on chapter 3 (sections 3.2 and 3.4 are most relevant to this
lecture)

• Jurafsky and Martin (2009) has a short section (6.6.1) on regression
• You can also consult any machine learning book (including the ones listed

below)
Barber, David (2012). Bayesian Reasoning and Machine Learning. Cambridge University Press. isbn: 9780521518147.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Second.
Springer series in statistics. Springer-Verlag New York. isbn: 9780387848587. url: http://web.stanford.edu/~hastie/ElemStatLearn/.

James, G., D. Witten, T. Hastie, and R. Tibshirani (2013). An Introduction to Statistical Learning: with Applications in R. Springer Texts in Statistics.
Springer New York. isbn: 9781461471387. url: http://www-bcf.usc.edu/~gareth/ISL/.

Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition. second. Pearson Prentice Hall. isbn: 978-0-13-504196-3.

Mitchell, Thomas (1997). Machine Learning. 1st. McGraw Hill Higher Education. isbn: 0071154671,0070428077,9780071154673,9780070428072.
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A hands-on exercise
Draw a regression line over the plot
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A hands-on exercise (cont.)

• What is the regression equation?
• What is the expected grade for a student who did did not study at all?
• What is the expected grade for a student who studied 12 hours?
• What is the expected grade for a student who studied 40 hours?
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A hands-on exercise
The regression line
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A hands-on exercise
Your estimates
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