

Statistical Natural Language Processing

N-gram Language Models

Çağrı Çöltekin

University of Tübingen Seminar für Sprachwissenschaft

Summer Semester 2018

 n-gram language models are the 'classical' approach to language modeling

• They assign scores, typically probabilities, to sequences (of

• A language model answers the question *how likely is a*

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Exter

sequence of words in a given language?

N-gram language models

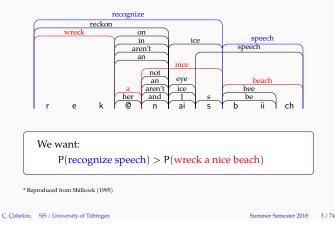
- The main idea is to estimate probabilities of sequences, using the probabilities of words given a limited history
- As a bonus we get the answer for what is the most likely word given previous words?

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 1 / 74

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Exter

N-grams in practice: speech recognition



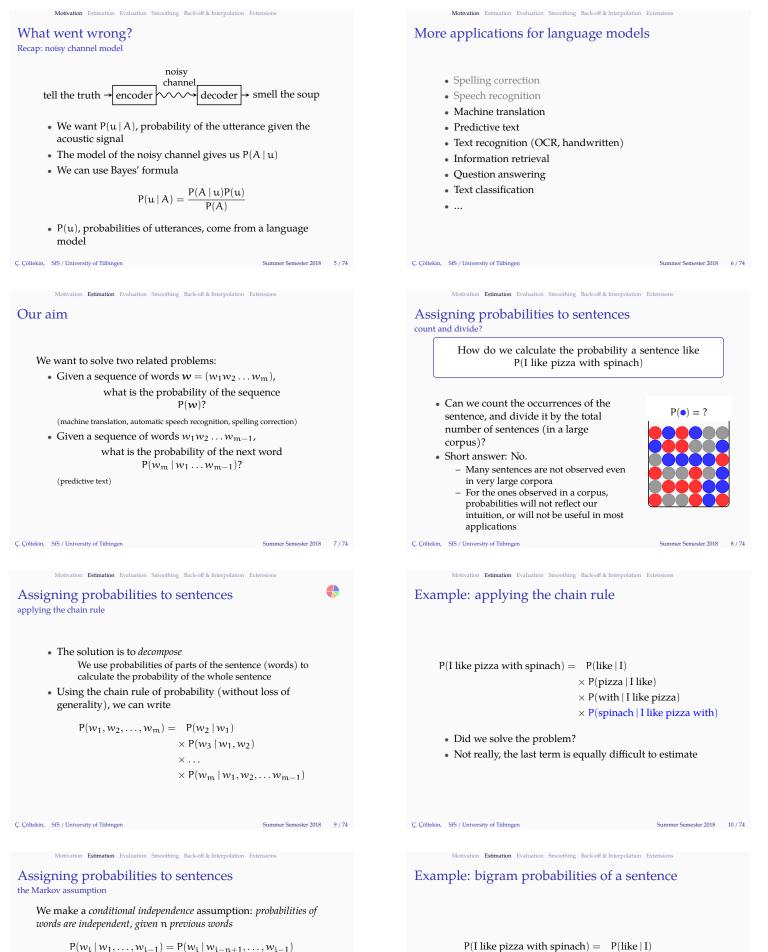
Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extension

. THE WHOLE TRUTH DE TOLL-BOOTH. ìt

Speech recognition gone wrong

Speech recognition gone wrong

Summer Semester 2018 4 / 74



and

$$P(w_1,\ldots,w_m) = \prod_{i=1}^m P(w_i \mid w_{i-n+1},\ldots,w_{i-1})$$

For example, with n = 2 (bigram, first order Markov model):

$$P(w_1,\ldots,w_m) = \prod_{i=1}^m P(w_i \mid w_{i-1})$$

 $\times P(pizza \,|\, like)$

• Now, hopefully, we can count them in a corpus

 $\times P(with \mid pizza)$ $\times P(spinach \mid with)$

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Exte

Maximum-likelihood estimation (MLE)

- · The MLE of n-gram probabilities is based on their frequencies in a corpus
- We are interested in conditional probabilities of the form: $P(w_i | w_1, \dots, w_{i-1})$, which we estimate using

$$P(w_{i} | w_{i-n+1}, \dots, w_{i-1}) = \frac{C(w_{i-n+1} \dots w_{i})}{C(w_{i-n+1} \dots w_{i-1})}$$

where, C() is the frequency (count) of the sequence in the corpus.

• For example, the probability P(like | I) would be

$$\begin{split} \mathsf{P}(like \mid I) &= \frac{C(I\,like)}{C(I)} \\ &= \frac{\text{number of times I like occurs in the corpus}}{\text{number of times I occurs in the corpus}} \end{split}$$

C. Cöltekin, SfS / University of Tübinger

Unigrams

Unigrams are simply the single words (or tokens).

A small corpus I 'm sorry , Dave . I 'm afraid I can 't do that .

V	/hen tokenized, we
h	ave 15 tokens, and 11
tı	ipes.

Summer Semester 2018 15 / 74

Summer Semester 2018

13 / 74

		l	Jnigrar	n counts			
I	3	,	1	afraid	1	do	1
′m	2	Dave	1	can	1	that	1
sorry	1		2	′t	1		

Traditionally, can't is tokenized as ca_n't (similar to have_n't, is_n't etc.), but for our purposes can_t is more readable

Ç. Çöltekin, SfS / University of Tübingen

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extension

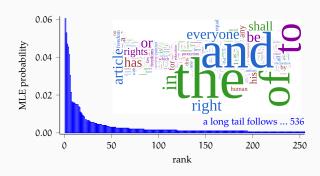
N-gram models define probability distributions

 An n-gram model defines a probability 	word	prob
distribution over words	Ι	0.200
$\sum \mathbf{P}(\mathbf{n}) = 1$	′m	0.133
$\sum_{w \in W} P(w) = 1$		0.133
$w \in V$	′t	0.067
 They also define probability 	,	0.067
distributions over word sequences of	Dave	0.067
equal size. For example (length 2),	afraid	0.067
	can	0.067
$\sum \sum P(w)P(v) = 1$	do	0.067
$w \in V$ $v \in V$	sorry	0.067
 What about sentences? 	that	0.067
• What about schickes:		1.000

Ç. Çöltekin, SfS / University of Tübingen

Unigram probabilities in a (slightly) larger corpus MLE probabilities in the Universal Declaration of Human Rights

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Exten



Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extension

MLE estimation of an n-gram language model

An n-gram model conditioned on n - 1 previous words.

unigram	$P(w_{\mathfrak{i}}) = \frac{C(w_{\mathfrak{i}})}{N}$
bigram	$P(w_{i}) = P(w_{i} w_{i-1}) = \frac{C(w_{i-1}w_{i})}{C(w_{i-1})}$
trigram	$P(w_{i}) = P(w_{i} w_{i-2}w_{i-1}) = \frac{C(w_{i-2}w_{i-1}w_{i})}{C(w_{i-2}w_{i-1})}$

Parameters of an n-gram model are these conditional probabilities.

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Exter Unigram probability of a sentence

I	3	,	1	afraid	1	do	1
′m	2	Dave	1	can	1	that	1
sorry	1		2	′t	1		

. (=		,	,	,							
=	P(I)	×	P('m)	×	P(sorry)	\times	Ρ(,)	×	P(Dave)	\times	P(.)
=	$\frac{3}{15}$	×	$\frac{2}{15}$	×	$\frac{1}{15}$	×	$\frac{1}{15}$	×	$\frac{1}{15}$	×	$\frac{2}{15}$
=	0.00	000	1 05								
Б) .	. т			D)	2					

- P(, 'm I . sorry Dave) = ?
- What is the most likely sentence according to this model?

Summer Semester 2018 16 / 74

ostor 2018

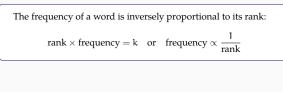
14 / 74

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Exte Unigram probabilities

Ç. Çöltekin, SfS / University of Tübingen

Zipf's law – a short divergence

Motivation Estimation Evaluation Smoothing Back-off & Interpolation External



- This is a reoccurring theme in (computational) linguistics: most linguistic units follow more-or-less a similar distribution
- Important consequence for us (in this lecture):
 - even very large corpora will not contain some of the words (or n-grams)
 - there will be many low-probability events (words/n-grams)

Bigrams

Bigrams are overlapping sequences of two tokens.

			orry)(, Dave			
I	′m]	afraid I	can	/t do) tha	t).	
		Big	ram co	ounts			
ngram	freq	ngram	freq	ngram	freq	ngram	freq
I ′m	2	, Dave	1	afraid I	1	n't do	1
'm sorry	1	Dave .	1	I can	1	do that	1
sorry,	1	'm afraid	1	can 't	1	that .	1

• What about the bigram '. I '?

Ç. Çöltekin, SfS / University of Tübingen

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Calculating bigram probabilities

recap with some more detail

We want to calculate $P(w_2 | w_1)$. From the chain rule:

$$P(w_2 | w_1) = \frac{P(w_1, w_2)}{P(w_1)}$$

and, the MLE

$$P(w_2 | w_1) = \frac{\frac{C(w_1w_2)}{N}}{\frac{C(w_1)}{N}} = \frac{C(w_1w_2)}{C(w_1)}$$

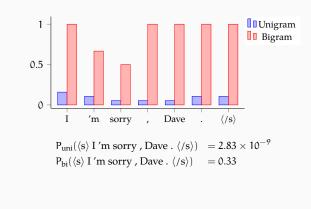
 $P(w_2 | w_1)$ is the probability of w_2 given the previous word is w_1

 $P(w_2, w_1)$ is the probability of the sequence w_1w_2

 $P(w_1)$ is the probability of w_1 occurring as the first item in a bigram, not its unigram probability

Ç. Çöltekin, SfS / University of Tübingen

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Exten



Ç. Çöltekin, SfS / University of Tübingen

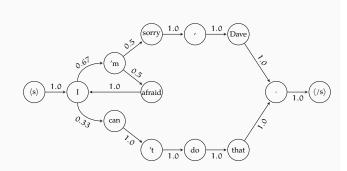
Summer Semester 2018 25 / 74

Summer Semester 2018 21 / 74

Summer Semester 2018 23 / 74

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

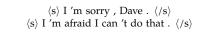
Bigram models as weighted finite-state automata



Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Sentence boundary markers

If we want sentence probabilities, we need to mark them.



- The bigram ' $\langle s\rangle~$ I ' is not the same as the unigram ' I ' Including $\langle s\rangle$ allows us to predict likely words at the beginning of a sentence
- Including $\langle /s\rangle$ allows us to assign a proper probability distribution to sentences

Motivation Estimation Evaluation Smoothing Back-off & Interpolation unigram probability! **Bigram probabilities** $C(w_1w_2)$ $C(w_1)$ $P(w_2)$ w_1w_2 $P(w_1w_2)$ $P(w_1)$ $P(w_2 | w_1)$ 0.18 $\langle s \rangle I$ 2 0.12 0.12 1.00 2 0.67 0.12 I 'm 2 3 0.12 0.18 2 0.06 0.12 0.50 0.06 'm sorry 1 0.06 sorry, 0.06 0.06 1.00 , Dave 0.06 0.06 1.00 0.06 Dave . 0.06 0.06 1.00 0.12 'm afraid 0.06 0.12 0.50 0.06 2 afraid I 0.06 0.06 1.00 0.18 I can 3 0.06 0.18 0.33 0.06 can 't 0.06 0.06 1.00 0.06 n't do 0.06 0.06 1.00 0.06 do that 0.06 0.06 1.00 0.06 that . 0.06 0.06 1.00 0.12 0.12 0.12 1.00 0.12 . $\langle /s \rangle$ 2 2

Ç. Çöltekin, SfS / University of Tübingen

C. Cöltekin, SfS / University of Tübinge

Summer Semester 2018 24 / 74

22 / 74

Unigram vs. bigram probabilities

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Exte

in sentences and non-sentences

w	I	′m	sorry	,	Dave		
P _{uni}	0.20	0.13	0.07	0.07	0.07	0.07	2.83×10^{-9}
P_{bi}	1.00	0.67	0.50	1.00	1.00	1.00	0.33
	1	,	т			D	1
w	· /	′m	Ι	•	sorry	Dave	
P _{uni}	0.07	0.13	0.20	0.07	0.07	0.07	2.83×10^{-9}
P_{bi}	0.00	0.00	0.00	0.00	0.00	1.00	0.00
w	I	′m	afraid		Dave		1
vv	1	111	anaiu	,	Dave	•	
P _{uni}	0.07	0.13	0.07	0.07	0.07	0.13	2.83×10^{-9}
P _{bi}	1.00	0.67	0.50	0.00	0.50	1.00	0.00

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 26 / 74

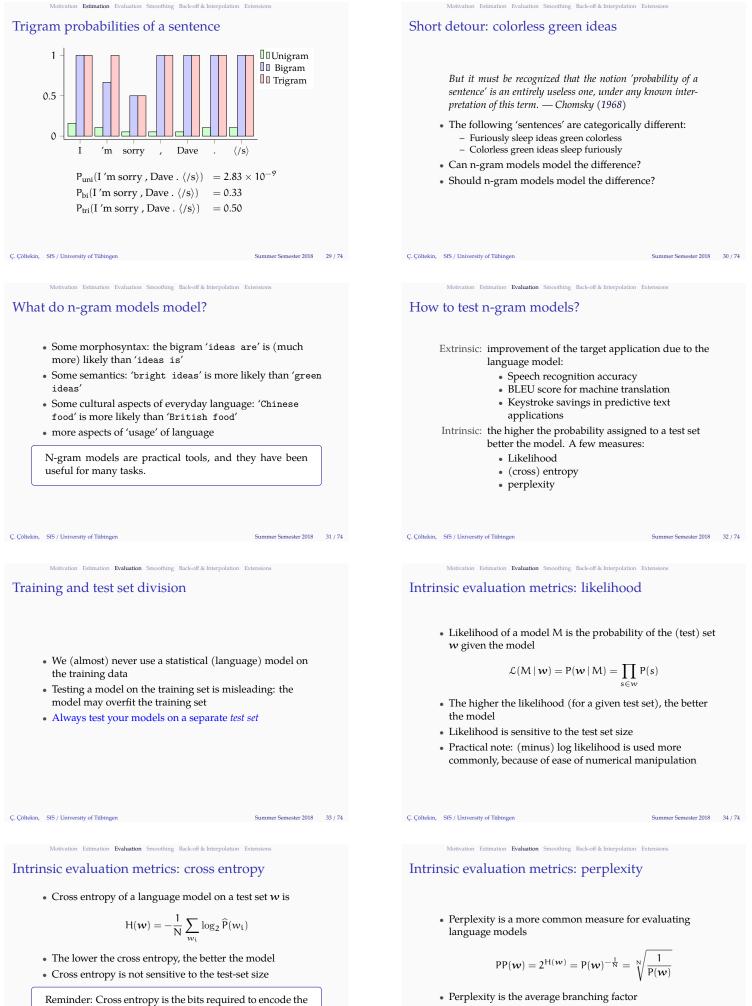
Trigrams

$\langle s \rangle \; \langle s \rangle \; I \; 'm \; sorry$, Dave . $\langle /s \rangle$	
$\langle s \rangle \langle s \rangle$ I 'm afraid I can 't do that .	$\langle s \rangle$

Motivation Estimation Evaluation Smoothing Back-off & Interpolation External

Trigram counts								
ngram	freq	ngram	freq	ngram	freq			
$\langle s \rangle \langle s \rangle I$	2	do that .	1	that . $\langle /s \rangle$	1			
⟨s⟩ I ′m	2	I 'm sorry	1	'm sorry,	1			
sorry, Dave	1	, Dave .	1	Dave . $\langle /s \rangle$	1			
I 'm afraid	1	'm afraid I	1	afraid I can	1			
I can 't	1	can 't do	1	't do that	1			

• How many n-grams are there in a sentence of length m?



- Similar to cross entropy
 - lower better
 - not sensitive to test set size

tion P.

data coming from P using another (approximate) distribu-

 $\mathsf{H}(\mathsf{P}, Q) = -\sum_x \mathsf{P}(x) \log \widehat{\mathsf{P}}(x)$

Summer Semester 2018 35 / 74

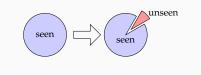
Ç. Çöltekin, Sf5

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Exter

What do we do with unseen n-grams?

...and other issues with MLE estimates

- Words (and word sequences) are distributed according to the Zipf's law: *many words are rare*.
- MLE will assign 0 probabilities to unseen words, and sequences containing unseen words
- Even with non-zero probabilities, MLE *overfits* the training data
- One solution is smoothing: take some probability mass from known words, and assign it to unknown words



Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 37 / 74

ster 2018

39 / 74

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Exter

Laplace smoothing

for n-grams

• The probability of a bigram becomes

$$P_{+1}(w_iw_{i-1}) = \frac{C(w_iw_{i-1}) + 1}{N + V^2}$$

• and, the conditional probability

$$P_{+1}(w_i | w_{i-1}) = \frac{C(w_{i-1}w_i) + 1}{C(w_{i-1}) + V}$$

In general

$$\begin{split} \mathsf{P}_{+1}(w_{i-n+1}^{i}) &= \quad \frac{\mathsf{C}(w_{i-n+1}^{i})+1}{\mathsf{N}+\mathsf{V}^{\mathsf{n}}} \\ \mathsf{P}_{+1}(w_{i-n+1}^{i} \mid w_{i-n+1}^{i-1}) &= \quad \frac{\mathsf{C}(w_{i-n+1}^{i})+1}{\mathsf{C}(w_{i-n+1}^{i-1})+\mathsf{V}} \end{split}$$

Ç. Çöltekin, SfS / University of Tübingen

MLE vs. Laplace probabilities

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Exte

probabilities of sentences and non-sentences

w	I	′m	sorry	,	Dave		$\langle /s \rangle$	
P _{MLE}	1.00	0.67	0.50	1.00	1.00	1.00	1.00	0.33
P_{+1}	0.25	0.23	0.17	0.18	0.18	0.18	0.25	1.44×10^{-5}
w	,	′m	Ι		sorry	Dave	$\langle /s \rangle$	
P _{MLE}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P ₊₁	0.08	0.09	0.08	0.08	0.08	0.09	0.09	3.34×10^{-8}
w	I	′m	afraid	,	Dave		$\langle /s \rangle$	
P _{MLE}	1.00	0.67	0.50	0.00	1.00	1.00	1.00	
P ₊₁	0.25	0.23	0.17	0.09	0.18	0.18	0.25	7.22 × 10 ⁻

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 41 / 74

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Exter

Lidstone correction

 $(Add-\alpha \text{ smoothing})$

- A simple improvement over Laplace smoothing is adding α instead of 1

$$P_{+\alpha}(w_{i-n+1}^{i} | w_{i-n+1}^{i-1}) = \frac{C(w_{i-n+1}^{i}) + \alpha}{C(w_{i-n+1}^{i-1}) + \alpha V}$$

- $\bullet\,$ With smaller α values, the model behaves similar to MLE, it overfits: it has high variance
- $\bullet\,$ Larger α values reduce overfitting/variance, but result in large bias

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Exter

(Add-one smoothing)

- The idea (from 1790): add one to all counts
- The probability of a word is estimated by

 $\mathsf{P}_{+1}(w) = \frac{\mathsf{C}(w) + \mathsf{1}}{\mathsf{N} + \mathsf{V}}$

N number of word tokens
V number of word types - the size of the vocabulary
Then, probability of an unknown word is:

 $\frac{0+1}{N+V}$

C. Cöltekin, SfS / University of Tübingen

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Bigram probabilities MLE vs. Laplace smoothing

w_1w_2	$C_{+1}I$	$P_{\rm MLE}(w_1w_2)$	$P_{+1}(w_1w_2)$	$P_{\text{MLE}}(w_2 \mid w_1)$	$P_{+1}(w_2 v_2)$
⟨s⟩ I	3	0.118	0.019	1.000	0.188
I 'm	3	0.118	0.019	0.667	0.176
'm sorry	2	0.059	0.012	0.500	0.125
sorry,	2	0.059	0.012	1.000	0.133
, Dave	2	0.059	0.012	1.000	0.133
Dave .	2	0.059	0.012	1.000	0.133
'm afraid	2	0.059	0.012	0.500	0.125
afraid I	2	0.059	0.012	1.000	0.133
I can	2	0.059	0.012	0.333	0.118
can 't	2	0.059	0.012	1.000	0.133
n't do	2	0.059	0.012	1.000	0.133
do that	2	0.059	0.012	1.000	0.133
that .	2	0.059	0.012	1.000	0.133
. $\langle /s \rangle$	3	0.118	0.019	1.000	0.188
Σ		1.000	0.193		

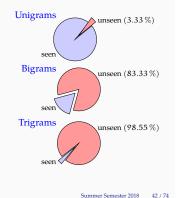
Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 40 / 74

Summer Semester 2018 38 / 74

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Exter

- Laplace smoothing reserves probability mass proportional to the size of the vocabulary
- This is just too much for large vocabularies and higher order n-grams
 Note that only years for one
- Note that only very few of the higher level n-grams (e.g., trigrams) are possible



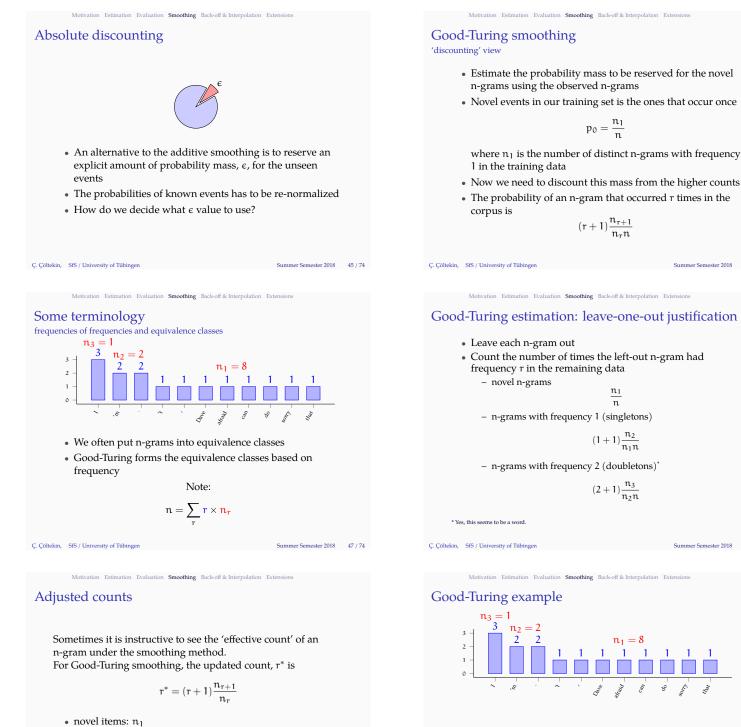
Ç. Çöltekin, SfS / University of Tübingen

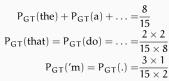
Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensio

How do we pick a good α value

setting smoothing parameters

- We want α value that works best outside the training data
- Peeking at your test data during training/development is wrong
- This calls for another division of the available data: set aside a *development set* for tuning *hyperparameters*
- Alternatively, we can use k-fold cross validation and take the α with the best average score





Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 50 / 74

Summer Semester 2018 48 / 74

Summer Semester 2018

Not all (unknown) n-grams are equal

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Exter

- Let's assume that black squirrel is an unknown bigram
- · How do we calculate the smoothed probability

$$\mathsf{P}_{+1}(\texttt{squirrel} \,|\, \texttt{black}) = \frac{0+1}{C(\texttt{black}) + V}$$

• How about black wug?

$$P_{+1}(\texttt{black wug}) = P_{+1}(\texttt{wug} \,|\, \texttt{black}) = \frac{0+1}{C(\texttt{black}) + V}$$

· Would it make a difference if we used a better smoothing method (e.g., Good-Turing?)

• singletons: $\frac{2 \times n_2}{n_1}$ • doubletons: $\frac{3 \times n_3}{n_2}$

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensi

+ Zero counts: we cannot assign probabilities if $n_{r+1} = 0$ • The estimates of some of the frequencies of frequencies are

- A solution is to replace $n_{\rm r}$ with smoothed counts $z_{\rm r}$ • A well-known technique (simple Good-Turing) for

 $\log z_r = a + b \log r$

smoothing n_r is to use linear interpolation

Issues with Good-Turing discounting

• ...

With some solutions

unreliable

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 49 / 74

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extension

Back-off and interpolation

The general idea is to fall-back to lower order n-gram when estimation is unreliable

• Even if,

$$C(\texttt{black squirrel}) = C(\texttt{black wug}) = 0$$

it is unlikely that

C(squirrel) = C(wug)

Summer Semester 2018 53 / 74

Summer Semester 2018 55 / 74

in a reasonably sized corpus

Ç. Çöltekin, SfS / University of Tübingen

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extension

Interpolation

Interpolation uses a linear combination:

$$P_{int}(w_{i} | w_{i-1}) = \lambda P(w_{i} | w_{i-1}) + (1 - \lambda) P(w_{i})$$

In general (recursive definition),

 $P_{int}(w_i | w_{i-n+1}^{i-1}) = \lambda P(w_i | w_{i-n+1}^{i-1}) + (1-\lambda)P_{int}(w_i | w_{i-n+2}^{i-1})$

- $\sum \lambda_i = 1$
- Recursion terminates with
- either smoothed unigram counts
- or uniform distribution $\frac{1}{V}$

Ç. Çöltekin, SfS / University of Tübingen

Katz back-off

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extens

A popular back-off method is Katz back-off:

 $\mathsf{P}_{Katz}(w_i \,|\, w_{i-n+1}^{i-1}) = \begin{cases} \mathsf{P}^*(w_i \,|\, w_{i-n+1}^{i-1}) & \text{if } C(w_{i-n+1}^i) > 0 \\ \alpha_{w_{i-n+1}^{i-1}} \,\mathsf{P}_{Katz}(w_i \,|\, w_{i-n+2}^{i-1}) & \text{otherwise} \end{cases}$

- + $P^*(\cdot)$ is the Good-Turing discounted probability estimate (only for n-grams with small counts)
- $\alpha_{w_{t-n+1}^{i-1}}$ makes sure that the back-off probabilities sum to the discounted amount
- α is high for frequent contexts. So, hopefully,

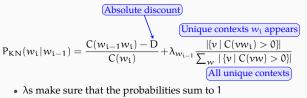
 $\begin{array}{ll} \alpha_{\texttt{black}} P(\texttt{squirrel}) > & \alpha_{\texttt{wuggy}} P(\texttt{squirrel}) \\ P(\texttt{squirrel} \mid \texttt{black}) > & P(\texttt{squirrel} \mid \texttt{wuggy}) \end{array}$

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 57 / 74

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extension

Kneser-Ney interpolation



• The same idea can be applied to back-off as well (interpolation seems to work better)

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extension

Back-off

 ${\it Back-off}$ uses the estimate if it is available, 'backs off' to the lower order n-gram(s) otherwise:

$$P(w_i \mid w_{i-1}) = \begin{cases} P^*(w_i \mid w_{i-1}) & \text{if } C(w_{i-1}w_i) > 0\\ \alpha P(w_i) & \text{otherwise} \end{cases}$$

where,

- $P^*(\cdot)$ is the discounted probability
- α makes sure that $\sum P(w)$ is the discounted amount
- P(w_i), typically, smoothed unigram probability

```
C. Cöltekin, SfS / University of Tübingen
```

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Not all contexts are equal

• Back to our example: given both bigrams

- black squirrel
 - wuggy squirrel
- are unknown, the above formulations assign the same probability to both bigrams
- To solve this, the back-off or interpolation parameters $(\alpha \mbox{ or } \lambda)$ are often conditioned on the context
- For example,

$$\begin{split} P_{\text{int}}(w_i \mid w_{i-n+1}^{i-1}) &= \lambda_{w_{i-n+1}^{i-1}} P(w_i \mid w_{i-n+1}^{i-1}) \\ &+ (1 - \lambda_{w_{i-n+1}^{i-1}}) P_{\text{int}}(w_i \mid w_{i-n+2}^{i-1}) \end{split}$$

Ç. Çöltekin, SfS / University of Tübingen

mmer Semester 2018 56 / 74

Summer Semester 2018 54 / 74

Kneser-Ney interpolation: intuition

• Use absolute discounting for the higher order n-gram

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

- Estimate the lower order n-gram probabilities based on the probability of the target word occurring in a new context
 Example:
 - I can't see without my reading ____
- It turns out the word Francisco is more frequent than glasses (in *the* typical English corpus, PTB)
- But Francisco occurs only in the context San Francisco
- Assigning probabilities to unigrams based on the number of unique contexts they appear makes glasses more likely

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 58 / 74

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Some shortcomings of the n-gram language models

The n-gram language models are simple and successful, but ...

- They are highly sensitive to the training data: you do not want to use an n-gram model trained on business news for medical texts
- They cannot handle long-distance dependencies: In the last race, the horse he bought last year finally _____.
- The success often drops in morphologically complex languages
- The smoothing methods are often 'a bag of tricks'

ation Estimation Evaluation Smoothing Back-off & Interpolation Exte

A quick summary

Markov assumption

- · Our aim is to assign probabilities to sentences
- P(I'm sorry , Dave .) = ?Problem: We cannot just count & divide
 - Most sentences are rare: no (reliable) way to count their
 - occurrences
 - Sentence-internal structure tells a lot about it's probability

Solution: Divide up, simplify with a Markov assumption P(I'm sorry, Dave) =

 $\mathsf{P}(I \,|\, \langle s \rangle) \mathsf{P}('m \,|\, I) \mathsf{P}(sorry \,|\, 'm) \mathsf{P}(, |\, sorry) \mathsf{P}(Dave \,|\, ,) \mathsf{P}(. \,|\, Dave) \mathsf{P}(\langle /s \rangle \,|\, .)$ Now we can count the parts (n-grams), and estimate their probability with MLE.

C. Cöltekin, SfS / University of Tübingen

Summer Semester 2018 61 / 74

Summer Semester 2018 63 / 74

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extens

A quick summary Back-off & interpolation

Problem if unseen we assign the same probability for

- black squirrel

black wug

Solution Fall back to lower-order n-grams when you cannot estimate the higher-order n-gram

Back-off

$$\mathsf{P}(w_{i} \mid w_{i-1}) = \begin{cases} \mathsf{P}^{*}(w_{i} \mid w_{i-1}) & \text{if } \mathsf{C}(w_{i-1}w_{i}) > 0\\ \alpha \mathsf{P}(w_{i}) & \text{otherwise} \end{cases}$$

Interpolation

$$P_{int}(w_{i} | w_{i-1}) = \lambda P(w_{i} | w_{i-1}) + (1 - \lambda) P(w_{i})$$

Now P(squirrel) contributes to P(squirrel|black), it should be higher than P(wug|black).

Ç. Çöltekin, SfS / University of Tübingen

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extension

A quick summary

More problems with back-off / interpolation

Problem	if unseen, we assign higher probability to - reading Francisco	0	
	than		
	- reading glasses		
Solution	Assigning probabilities to unigrams base of unique contexts they appear	ed on the number	
	<i>Francisco</i> occurs only in <i>San Francisco</i> , in more contexts.	but <i>glasses</i> occur	
	SfS / University of Tübingen	Summer Semester 2018	65 / 74

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Skipping

- The contexts
 - boring | the lecture was
 - boring (the) lecture yesterday was
 - are completely different for an n-gram model
- · A potential solution is to consider contexts with gaps, 'skipping' one or more words
- We would, for example model P(e | abcd) with a combination (e.g., interpolation) of
 - P(e | abc_)
 - P(e | ab_d)
 - $P(e | a_cd)$
 - ...

A quick summary

Smoothing

Problem The MLE assigns 0 probabilities to unobserved n-grams, and any sentence containing unobserved n-grams. In general, it overfits

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Exte

Solution Reserve some probability mass for unobserved n-grams Additive smoothing add α to every count

$$P_{+\alpha}(w_{i-n+1}^{i} | w_{i-n+1}^{i-1}) = \frac{C(w_{i-n+1}^{i}) + \alpha}{C(w_{i-n+1}^{i-1}) + \alpha V}$$

- reserve a fixed amount of probability mass to Discounting unobserved n-grams
 - normalize the probabilities of observed
 - n-grams
 - (e.g., Good-Turing smoothing)

C. Cöltekin, SfS / University of Tübingen

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Exter

A quick summary

Problems with simple back-off / interpolation Problem if unseen, we assign the same probability for

- black squirrel

 - wuggy squirrel
- Solution make normalizing constants (α, λ) context dependent, higher for context n-grams that are more frequent Back-off

$$P(w_i \mid w_{i-1}) = \begin{cases} P^*(w_i \mid w_{i-1}) & \text{if } C(w_{i-1}w_i) > 0\\ \alpha_{i-1}P(w_i) & \text{otherwise} \end{cases}$$

Interpolation

 $P_{int}(w_{i} | w_{i-1}) = P^{*}(w_{i} | w_{i-1}) + \lambda_{w_{i-1}}P(w_{i})$

Now P(black) contributes to P(squirrel | black), it should be higher than P(wuggy | squirrel).

Ç. Çöltekin, SfS / University of Tübingen

er Semester 2018 64 / 74

Summer Semester 2018 62 / 74

Cluster-based n-grams

• The idea is to cluster the words, and fall-back (back-off or interpolate) to the cluster

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

- For example,
 - a clustering algorithm is likely to form a cluster containing
 - words for food, e.g., {apple, pear, broccoli, spinach} if you have never seen eat your broccoli, estimate

 $P(\texttt{broccoli}|\texttt{eat your}) = P(\texttt{FOOD}|\texttt{eat your}) \times P(\texttt{broccoli}|\texttt{FOOD})$

- Clustering can be
- hard a word belongs to only one cluster (simplifies the model) soft words can be assigned to clusters probabilistically (more flexible)

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 66 / 74

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Modeling sentence types

- Another way to improve a language model is to condition on the sentence types
- The idea is different types of sentences (e.g., ones related to different topics) have different behavior
- · Sentence types are typically based on clustering
- We create multiple language models, one for each sentence type
- · Often a 'general' language model is used, as a fall-back

Caching Structured language models • Another possibility is using a generative parser · If a word is used in a document, its probability of being used again is high · Parsers try to explicitly model (good) sentences Caching models condition the probability of a word, to a · Parsers naturally capture long-distance dependencies larger context (besides the immediate history), such as · Parsers require much more computational resources than - the words in the document (if document boundaries are the n-gram models marked) • The improvements are often small (if any) a fixed window around the word C. Cöltekin, SfS / University of Tübingen Summer Semester 2018 69 / 74 C. Cöltekin, SfS / University of Tübingen Summer Semester 2018 70 / 74 Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions Maximum entropy models Neural language models

- · We can fit a logistic regression 'max-ent' model predicting P(w | context)
- Main advantage is to be able to condition on arbitrary features

ation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 71 / 74

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Some notes on implementation

- The typical use of n-gram models are on (very) large corpora
- · We often need to pay attention to numeric instability issues:
 - It is more convenient to work with 'log probabilities' Sometimes (log) probabilities are 'binned' into integers,
 - stored with small number of bits in memory
- Memory or storage may become a problem too
 - Assuming words below a frequency are 'unknown' often helps
 - Choice of correct data structure becomes important,
 - A common data structure is a trie or a suffix tree

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 73 / 74

Additional reading, references, credits

- Textbook reference: Jurafsky and Martin (2009, chapter 4) (draft chapter for the 3rd version is also available). Some of the examples in the slides come from this book.
- Chen and J. Goodman (1998) and Chen and J. Goodman (1999) include a detailed comparison of smoothing methods. The former (technical report) also includes a tutorial introduction
- J. T. Goodman (2001) studies a number of improvements to (n-gram) language models we have discussed. This technical report also includes some introductory material
- Gale and Sampson (1995) introduce the 'simple' Good-Turing estimation noted on Slide 15. The article also includes an introduction to the basic method.

ation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

- · Similar to maxent models, we can train a feed-forward network that predicts a word from its context
- (gated) Recurrent networks are more suitable to the task: Train a recurrent network to predict the next word in the sequence
 - The hidden representations reflect what is useful in the history
- · Combined with embeddings, RNN language models are generally more successful than n-gram models

Ç. Çöltekin, SfS / University of Tübingen

Summer Semester 2018 72 / 74

Motivation Estimation Evaluation Smoothing Back-off & Interpolation Extensions

Summary

- · We want to assign probabilities to sentences
- N-gram language models do this by
 - estimating probabilities of parts of the sentence (n-grams) - use the n-gram probability and a conditional independence assumption to estimate the probability of the sentence
- MLE estimate for n-gram overfit
- Smoothing is a way to fight overfitting
- · Back-off and interpolation yields better 'smoothing'
- · There are other ways to improve n-gram models, and
- language models without (explicitly) use of n-grams Next:

Today POS tagging

Mon/Fri Statistical parsing

Ç. Çöltekin, SfS / University of Tübingen

C. Cöltekin, SfS / University of Tübingen

Summer Semester 2018 74 / 74

Additional reading, references, credits (cont.)

- The quote from 2001: A Space Odyssey, 'I'm sorry Dave. I'm afraid I can't do it.' is probably one of the most frequent quotes in the CL literature. It was also quoted, among many others, by Jurafsky and Martin (2009).
- The HAL9000 camera image on page 15 is from Wikipedia, (re)drawn by Wikipedia user Cryteria.
- The Herman comic used in slide 4 is also a popular example in quite a few lecture slides posted online, it is difficult to find out who was the first.
- The smoothing visualization on slide ?? inspired by Julia Hockenmaier's slides.
- Chen, Stanley F and Joshua Goodman (1998). An empirical study of smoothing techniques for language modeling. Iech. rep. 1K-10-98. Harvard University, Computer Science C https://dash.harvard.edu/handle/1/25104739.
- E (1999). "An empirical study of smoothing techniques for language modeling". In: Computer speech & language 13.4, pp. 359-39

Additional reading, references, credits (cont.)

Chomsky, Noam (1968). "Quine's empirical assumptions". In: Synthese 19.1, pp. 53–68. DOI: 10.1007/BF00568049. Gale, William A and Geoffrey Sampson (1995). "Good-Turing frequency estimation without tears". In: Journal of Quantilative Linguistics 2.3, pp. 217–237. Goodman, Joshua T (2001). A bit of progress in language modeling extended version. Tech. rep. MSR-TR-2001-72. licrosoft Research Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An Introduction to Natural Language
 Processing, Computational Linguistics, and Speech Recognition. second. Pearson Prentice Hall. isasc
 978-0-13-504196-3. 978-0-13-50419-5.
Shillcock, Richard (1995). "Lexical Hypotheses in Continuous Speech". In: Cognitive Models of Speech Processing. Ed. by Gerry T. M. Altmann. MIT Press.

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2018 A.3