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The biological neuron
(showing a picture of a real neuron is mandatory in every ANN lecture)

Dendrite

Axon terminal

*Image source: Wikipedia
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Recap: the perceptron
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In ANN-speak f(-) is called an
activation function.
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Linear separability

o A classification problem is
said to be linearly separable 1@ ©
if one can find a linear
discriminator

o A well-known counter
example is the logical XOR o@ ®
problem

There is no line that can separate positive and negative classes.
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Artificial neural networks

Artificial neural networks (ANNs) are machine learning
models inspired by biological neural networks

ANNSs are powerful non-linear models

Power comes with a price: there are no guarantees of
finding the global minimum of the error function

ANNSs have been used in ML, Al, Cognitive science since
1950’s — with some ups and downs

Currently they are the driving force behind the popular
‘deep learning’ methods
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Artificial and biological neural networks

o ANN:S are inspired by biological neural networks

o Similar to biological networks, ANNs are made of many
simple processing units

o Despite the similarities, there are many differences: ANNs
do not mimic biological networks

o ANNS are practical statistical machine learning methods
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Recap: logistic regression
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where 8 = S P(y)

= 1+ e—wx *46‘
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Can a linear classifier learn the XOR problem?
o We can use non-linear basis functions
wo +wix1 +waxa +wid(x1,x2)

is still linear in w for any choice of ¢(-)

o For example, adding the product x;x, as an additional
feature would allow a solution like: x7 + x2 — 2x1x2

X1 X2 X1 +x2—2x1%2

0 0 0
0 1 1
1 0 1
1 1 0

o Choosing proper basis functions like x1x; is called feature
engineering
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https://en.wikipedia.org/wiki/Neuron
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Non-linear basis functions

solution in the original input space

1r @ S *

The solution to

oy +x2 —2x1x2 —0.5=0
isfa (non-linear)
0l S) @ discriminant that solves

the problem

| |

0 1

X1
C. Goltekin,  SfS / University of Tiibingen Summer Semester 2019 8 /34
Introduction Non-linearity MLP Non-line y and MLP Learning in ANNs

Where do non-linearities come from?

non-linearities are abundant in nature, it is not only the XOR problem

In a linear model, y = wo +wixy + ... + Wixk
o The outcome is linearly-related to the predictors
o The effects of the inputs are additive
This is not always the case:
o Some predictors affect the outcome in a non-linear way
— The effect may be strong or positive only in a certain range

of the variable (e.g., reaction time change by age)
- Some effects are periodic (e.g., many measures of time)

o Some predictors interact
‘not bad’ is not ‘not’ + ‘bad’ (e.g., for sentiment analysis)
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Multi-layer perceptron

the picture
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Each unit takes a weighted sum of their input,
and applies a (non-linear) activation function.
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Artificial neurons

an example

% =1 « A common activation
function is logistic sigmoid
X1 {A function
W 1
/ flx) = +——
X2 TZ> y 1+ex
o The output of the network
becomes
o |
Xm Y= T ewr
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Non-linear basis functions
solution in the 3D input space

The additional basis
function maps the

05 problem into 3D

X1X2

In the new, mapped
space, the points are
linearly separable
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Multi-layer perceptron

o The simplest modern ANN architecture is called
multi-layer perceptron (MLP)

o The MLP is a fully connected, feed-forward network
consisting of perceptron-like units

o Unlike perceptron, the units in an MLP use a continuous
activation function

o The MLP can be trained using gradient-based methods

o The MLP can represent many interesting machine learning
problems
- It can be used for both regression and classification
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Artificial neurons

The unit calculates a
weighted sum of the inputs

X0 = 1
m
> 2_wix =wx
o .
j
h,
x5 y o Result is a linear
w2 transformation
o Then the unit applies a
S non-linear activation
< function f(-)
Xm o Output of the unit is
y = f(wx)
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Activation functions in ANNs
hidden units

o The activation functions in MLP are typically continuous
(differentiable) functions

o For hidden units common choices are

v
. . . 1
—4 Sigmoid (logistic) eres)
/ : ex—1
7 Hyperbolic tangent (tanh) T
—— Rectified linear unit (relu) max(0,x)
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Activation functions in ANNs
output units

o The activation functions of the output units depends on
the task. Common choices are
- For regression, identity function
— For binary classification, logistic sigmoid

ewx

PU=T = e = e

— For multi-class classification, softmax

eWkX
Ply=kIx) ==~
T e
j
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MLP: a simple example

o Alternatively, we can write
the computations in matrix
form

h = f(wx)

y=gWn
—g (Wmf(W“ x))

o This corresponds to a
series of transformations
followed by elementwise
(non-linear) function
applications
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Solving non-linear problems with ANNs
a solution to XOR problem
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Solving non-linear problems with ANNs
a solution to XOR problem
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MLP: a simple example
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Solving non-linear problems with ANNs
a solution to XOR problem
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Solving non-linear problems with ANNs
a solution to XOR problem
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Solving non-linear problems with ANNs
a solution to XOR problem

Is this different from non-linear basis functions?
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Non-linear activation functions are necessary

Without non-linear activation functions, an ANN with any
number of layers is equivalent to a linear model.

X1 i—(
o hy = axy +cx2
Y hy =bxy +dxz
& @ y =ehy +fhy
5 = (ea+ fb)x1 + (ec + fd)x2

X2 d @2 y is still a linear function of x;
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Gradient descent: the picture
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A function is convex if there is only one (global) minimum.
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Error functions in ANN training
depend on the task

o For regression, a natural choice is the minimizing the sum
of squared error

« For binary classification, we use cross entropy
E(w) =—) yilogGi + (1 —yi)log(1 —Gs)
i

o Similarly, for multi-class classification, also cross entropy

Ew)=—) Y yixloglx
Tk

In practice, the ANN loss functions will not be convex.
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Learning in multi-layer networks: the problem

We want a way to update non-final weights based on final error.
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Gradient descent: a refresher

o The general idea is to approach a minimum of the error
function in small steps

w—w—nVJ(w)

— V] is the gradient of the loss function, it points to the
direction of the maximum increase
— 7 is the learning rate
o The updates can be performed
batch for the complete training set
on-line after every training instance
— this is known as stochastic gradient descent (SGD)
mini-batch after small fixed-sized batches
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Global and local minima

:
\ 4

i
o

global min.
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Learning in ANNSs

o ANNSs implement complex functions: we need to use
optimization methods (e.g., gradient descent) to train
them

o Typically error functions for ANNs are not convex,
gradient descent will find a local minimum
o Optimization requires updating multiple layers of weights

o Assigning credit (or blame) to each weight during
learning is not trivial

 An effective solution to the last problem is the
backpropagation algorithm
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Calculating gradient on a neural network

(with some simplification)

o We need to calculate the gradient:

x1 —a— (i ?a’ 3b’ 3¢’ ?d’ de’ of

vE_(aE 0E OE OE OE aE)

E(we an use gradient descent
directly
é = e % and 4E is easy, they do not
hs depend on other variables

We factor others using chain rule
X2 d (h, : J

OE _ hl 0 OE _ 0hl 9E
da _ da oni % 3¢ T ac ond
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Backpropagation
e So far, it is just math

. @ OE_OWIOE . 9E_ hi3E

b o da _ da on1 % 3¢ T ac onl
5 < o But a naive implementation does
€ many repeated calculations
é « ~ Backpropagation is an efficient

(dynamic programming)
™ algorithm that avoids repeated
calculations

Backpropagation works for any
computation graph without cycles
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Preventing overfitting in neural networks

o Asin linear models, we can use L1 and L2 regularization
by adding a regularization term to the error function
(known as weight decay). For example,

Jw) =E(w) + W]

o There are other ways to fight overfitting
— With early stopping, one stops the training before it reaches
to the smallest training error
— With dropout, random units (with all of their connections)
are dropped during training
— Injecting noise at the output, as a way to (implicitly) model
the noise in the target classes/values
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How many layers, units

o A network with single hidden layer is said to be a universal
approximator: it can approximate any continuous function
with arbitrary precision

« However, in practice multiple interconnected layers are
useful and commonly used in modern ANN models

o The choice of layers, in general the architecture of the
system, depends on the application
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Summary

o ANNSs are powerful non-linear learners
- based on some inspiration from biological NNs
- using many simple processing units
— built on linear models (logistic regression)

o For non-linear problems we need non-linear activation
functions, and at least one hidden layer

o ANNS can be used for both regression and classification
o ANN loss functions are not convex, what we find is a local
minimum
o They (typically) are trained with backpropagation algorithm
Next:
Mon/Fri Unsupervised learning
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Stochastic gradient descent

o Standard (batch) gradient
descent is computationally
expensive: it updates weight at
every epoch

o Stochastic gradient descent 5
=
(SGD) updates weights for every 5}
training instance
o SGD may take more steps, but w3

converges to the same solution

o In practice a mini-batch is more common

o Correct batch size is not only about efficiency, it also affects
accuracy
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Adapting learning rate

o The choice of learning rate 1 is important

too small slow convergence
too big overshooting - may fluctuate around the minimum,
or even jump away

o The idea is to adapt the learning rate during learning

o A common trick is adding a momentum:
if we move in the same direction a long time accelerate

oE
Awij(t) =n I
ij

+ OCAWij(t -1

o There are many adaptive optimization algorithms:
Adagrad, Adadelta, RMSprop, Adam, ...
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A bit of history

1 MLP  Learning in ANNs

1950-60 ANNSs (perceptron) became popular:
lots of excitement in Al, cognitive science
1970s Not much interest
— criticism on perceptron: linear separability
1980s ANNs became popular again
- backpropagation algorithm
- multi-layer networks
1990s ANNSs had again fallen ‘out of fashion’
- Engineering: other algorithms (such as SVMs) performed
generally better
- From the cognitive science perspective: ANNSs are difficult
to interpret
present ANNSs (again) enjoy a renewed popularity with the name
‘deep learning’
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Additional reading, references, credits

o Third edition (draft) of Jurafsky and Martin, has a new
chapter on neural networks

« Hastie, Tibshirani, and Friedman (2009, ch.11) also
includes an accessible introduction

o For a reivew of use of ANNs in NLP, including more
advanced topics, see Goldberg 2016
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Additional reading, references, credits (cont.)

=D

Goldberg, Yoav (2016). “A primer on neural network models for natural language processing”. In: Journal of Artificial
Intelligence Research 57, pp. 345-420.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Second. Springer series in statistics. Springer-Verlag New York. isen: 9780387848587. UrL:
http://ueb.stanford.edu/~hastie/ElenStatLearn/

Jurafsky, Daniel and James H. Martin (2009). Speech and Languiage Processing: An Introduction to Natural Language

Processing, Computational Linguistics, and Speech Recognition. second. Pearson Prentice Hall. isox
978-0-13-504196-3.
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