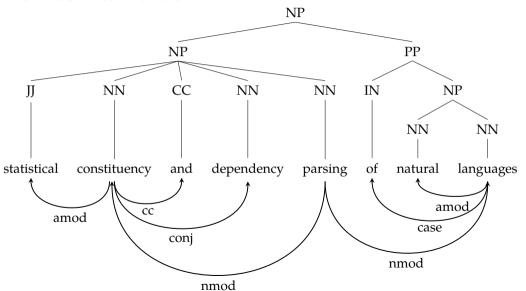
Statistical Natural Language Processing Statistical Parsing

Çağrı Çöltekin

University of Tübingen Seminar für Sprachwissenschaft

Summer Semester 2019

Next few lectures are about



Why do we need syntactic parsing?

 Syntactic analysis is an intermediate step in (semantic) interpretation of sentences

As result, it is useful for applications like *question answering, information extraction, ...*

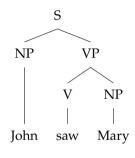
- (Statistical) parsers are also used as *language models* for applications like *speech* recognition and *machine translation*
- It can be used for *grammar checking*, and can be a useful tool for linguistic research

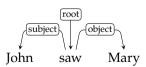
Ingredients of a parser

- A grammar
- An algorithm for parsing
- A method for ambiguity resolution

Dependency vs. constituency

- Constituency grammars are based on units formed by a group of lexical items (constituents or phrases)
- Dependency grammars model binary head-dependent relations between words
- Most of the theory of parsing is developed with constituency grammars
- Dependency grammars has recently become popular in CL

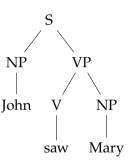




Constituency grammars

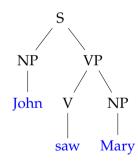
- Constituency grammars are probably the most studied grammars both in linguistics, and computer science
- The main idea is that groups of words form natural groups, or 'constituents', like noun phrases or word phrases
- phrase structure grammars or context-free grammars are often used as synonyms

Note: many grammar formalisms posit a particular form of constituency grammars, we will not focus on a particular grammar formalism here.



A phrase structure grammar is a tuple (Σ , N, S, R)

 Σ is a set of terminal symbols

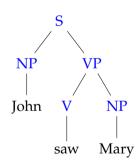


6 / 73

A phrase structure grammar is a tuple (Σ , N, S, R)

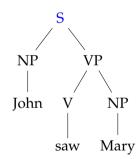
 Σ is a set of terminal symbols

N is a set of non-terminal symbols



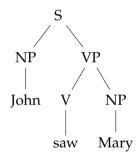
A phrase structure grammar is a tuple (Σ , N, S, R)

- Σ is a set of terminal symbols
- N is a set of non-terminal symbols
- $S \in N$ is a distinguished *start* symbol



A phrase structure grammar is a tuple (Σ , N, S, R)

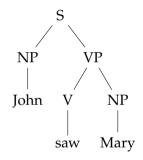
- Σ is a set of terminal symbols
- N is a set of non-terminal symbols
- $S \in N$ is a distinguished *start* symbol
- R is a set of 'rewrite' rules of the form $\alpha A \beta \rightarrow \gamma$ for $A \in N$ $\alpha, \beta, \gamma \in \Sigma \cup N$



$$egin{array}{llll} S &
ightarrow & NP \ VP &
ightarrow & VP &
ightarrow & VNF \ NP &
ightarrow & John \ | \ Mary & V &
ightarrow & saw \end{array}$$

A phrase structure grammar is a tuple (Σ , N, S, R)

- Σ is a set of terminal symbols
- N is a set of non-terminal symbols
- $S \in N$ is a distinguished *start* symbol
- R is a set of 'rewrite' rules of the form $\alpha A \beta \rightarrow \gamma$ for $A \in N$ $\alpha, \beta, \gamma \in \Sigma \cup N$
- The grammar accepts a sentence if it can be derived from S with the rewrite rules R



$$egin{array}{llll} {
m S} &
ightarrow & {
m NP \ VP} &
ightarrow & {
m VP} &
ightarrow & {
m VNF} \ {
m NP} &
ightarrow & {
m John \ | \ Mary} & {
m V} &
ightarrow & {
m saw} \ \end{array}$$

Example derivation

The example grammar:

 Phrase structure grammars derive a sentence with successive application of rewrite rules.

```
S \RightarrowNP VP \RightarrowJohn VP \RightarrowJohn V NP \RightarrowJohn saw NP \RightarrowJohn saw Mary or, S \stackrel{*}{\Rightarrow}John saw Mary
```

• The intermediate forms that contain non-terminals are called *sentential forms*

Constituency grammars and parsing

- Context-free grammars are parseable in $O(\mathfrak{n}^3)$ time complexity using dynamic programming algorithms
- Mildly context-sensitive grammars can also be parsed in polynomial time $(O(\mathfrak{n}^6))$
- Polynomial time algorithms are not always good enough in practice
 - We often use approximate solutions with greedy search algorithms

Where do grammars come from

- Grammars for (statistical) parsing can be either
 - hand crafted (many years of expert effort)
 - extracted from *treebanks* (which also require lots of effort)
 - 'induced' from raw data (interesting, but not as successful)
- Current practice relies mostly on treebanks
- Hybrid approaches also exist
- Grammar induction is not common (for practical models) but exploiting unlabled data is also a common trend

Context free grammars recap

- Context free grammars are sufficient for expressing most phenomena in natural language syntax
- Most of the parsing theory (and practice) is build on parsing CF languages
- The context-free rules have the form

$$A \rightarrow \alpha$$

where A is a single non-terminal symbol and α is a (possibly empty) sequence of terminal or non-terminal symbols

An example context-free grammar

 $S \quad \to NP \ VP$

 $S \rightarrow Aux NP VP$

 $NP \rightarrow Det N$

 $NP \rightarrow Prn$

 $NP \rightarrow NP PP$

 $VP \ \to V \ NP$

 $VP \ \to V$

 $VP \rightarrow VP PP$

 $PP \rightarrow Prp NP$

 $N \rightarrow duck$

 $N \rightarrow park$

 $N \rightarrow parks$

 $V \rightarrow duck$

 $V \rightarrow ducks$

 $V \rightarrow saw$

 $Prn \rightarrow she \mid her$

 $Prp \rightarrow in \ | \ with$

Det \rightarrow a | the

Derivation of sentence 'she saw a duck'

 $S \quad \Rightarrow NP \ VP$

 $\text{NP} \Rightarrow \text{Prn}$

 $Prn \Rightarrow she$

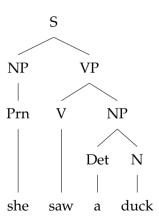
 $VP \Rightarrow V NP$

 $V \Rightarrow saw$

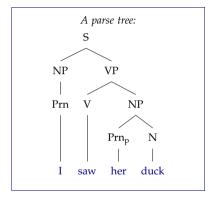
 $NP \Rightarrow Det N$

 $Det \Rightarrow a$

 $N \Rightarrow duck$



Representations of a context-free parse tree



A history of derivations:

- $S \Rightarrow NP VP$
- NP \Rightarrow Prn
- $Prn \Rightarrow I$
- $VP \Rightarrow V NP$
- $V \Rightarrow saw$
- NP \Rightarrow Prn_p N
- $Prn_p \Rightarrow her$
- N \Rightarrow duck

A sequence with (labeled) brackets

Parsing as search

- Parsing can be seen as search constrained by the grammar and the input
- Top down: start from S, find the derivations that lead to the sentence
- Bottom up: start from the sentence, find series of derivations (in reverse) that leads to S
- Search can be depth first or breadth first for both cases

Problems with search procedures

- Top-down search considers productions incompatible with the input, and cannot handle left recursion
- Bottom-up search considers non-terminals that would never lead to S
- Repeated work because of backtracking
- \rightarrow The result is exponential time complexity in the length of the sentence

Some of these problems can be solved using *dynamic programming*.

CKY algorithm

- The CKY (Cocke–Younger–Kasami), or CYK, parsing algorithm is a dynamic programming algorithm
- It processes the input bottom up, and saves the intermediate results on a chart
- Time complexity for *recognition* is $O(n^3)$ (with a space complexity of $O(n^2)$)
- It requires the CFG to be in *Chomsky normal form* (CNF)

Chomsky normal form (CNF)

- A CFG is in CNF, if the rewrite rules are in one of the following forms
 - $-A \rightarrow BC$
 - $-A \rightarrow a$

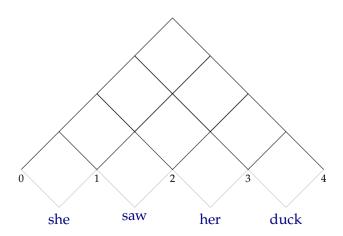
where A, B, C are non-terminals and a is a terminal

- Any CFG can be converted to CNF
- Resulting grammar is weakly equivalent to the original grammar:
 - it generates/accepts the same language
 - but the derivations are different

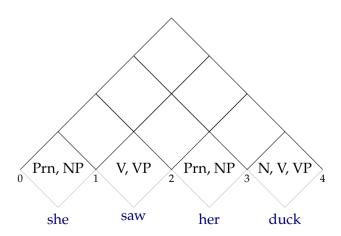
Converting to CNF: example

- For rules with > 2 RHS symbols $S \rightarrow Aux NP VP \Rightarrow S \rightarrow Aux X
 <math>X \rightarrow NP VP$
- For rules with < 2 RHS symbols $NP \rightarrow Prn \Rightarrow NP \rightarrow she \mid her$

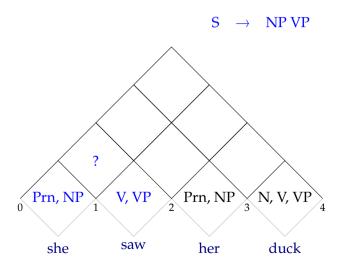
```
S \rightarrow NP VP
     → Aux NP VP
NP \rightarrow Det N
NP \rightarrow Prn
NP \, \to NP \, PP
VP \rightarrow V NP
VP \ \to V
VP \rightarrow VP PP
PP \rightarrow Prp NP
N \rightarrow duck
N \rightarrow park
N \rightarrow parks
V \rightarrow duck
V \rightarrow ducks
V \quad \to saw
Prn \rightarrow she \mid her
Prp \rightarrow in \mid with
Det \rightarrow a | the
```

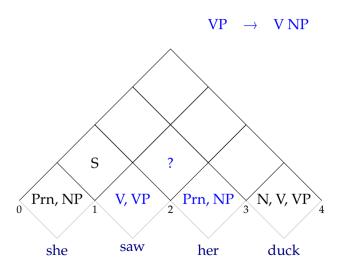


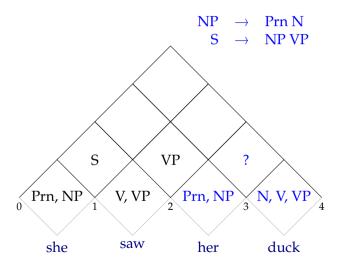
recognition example



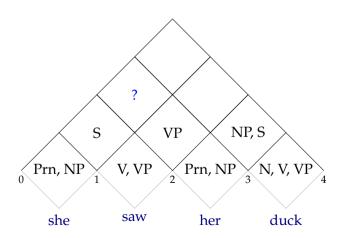
18 / 73



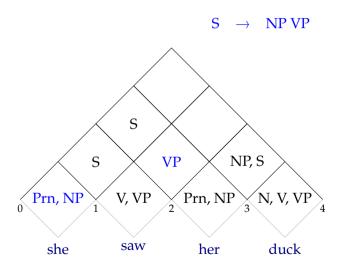


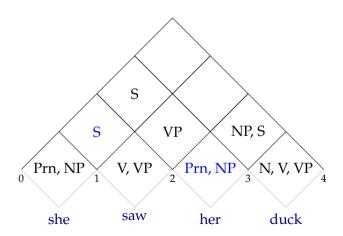


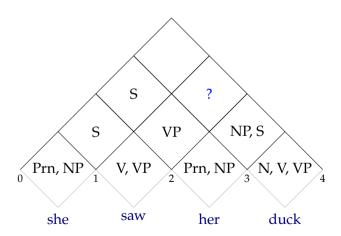
recognition example

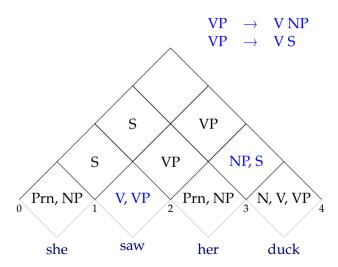


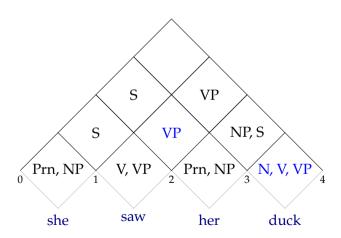
18 / 73



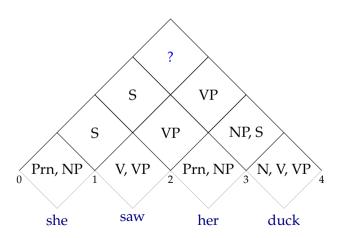




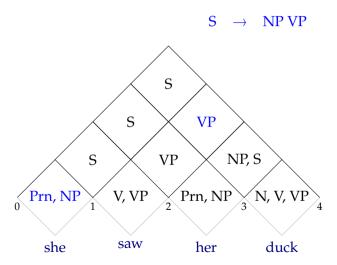


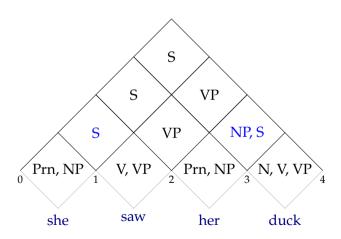


recognition example



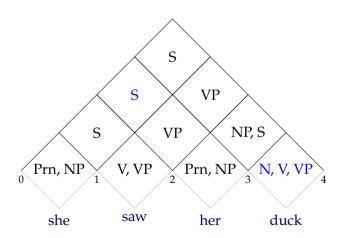
18 / 73





CKY demonstration

recognition example



CKY demonstration: the chart

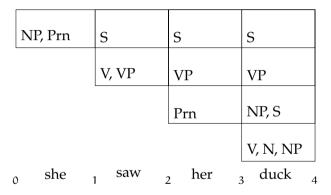
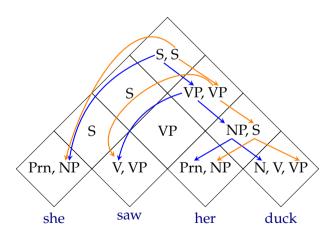


Chart is a 2-dimensional array, hence $O(n^2)$ space complexity.

Parsing requires back pointers



CKY summary

- + CKY avoids re-computing the analyses by storing the earlier analyses (of sub-spans) in a table
- It still computes lower level constituents that are not allowd by the grammar
- CKY requires the grammar to be in CNF
- CKY has $O(n^3)$ recognition complexity
- For parsing we need to keep track of backlinks
- CKY can effciently store all possible parses in a chart
- Enumerating all possible parses have exponential complexity (worst case)

Earley algorithm

- Earley algorithm is a top down parsing algorithm
- It allows arbitrary CFGs
- Keeps record of constituents that are predicted using the grammar (top-down) in-progress with partial evidence completed based on input seen so far at every position in the input string
- Time complexity is $O(n^3)$

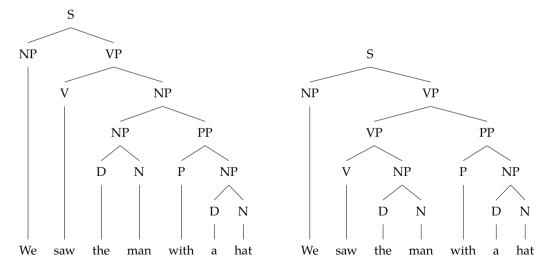
Summary: context-free parsing algorithms

- Naive search for parsing is intractable
- Dynamic programming algorithms allow polynomial time recognition
- Parsing may still be exponential in the worse case
- Ambiguity: CKY or Earley parse tables can represent ambiguity, but cannot say anything about which parse is the best

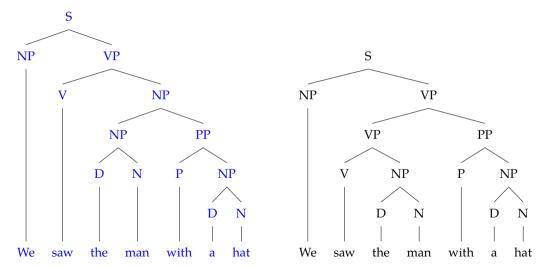
Pretty little girl's school (again)

Cartoon Theories of Linguistics, SpecGram Vol CLIII, No 4, 2008. http://specgram.com/CLIII.4/school.gif

The task: choosing the most plausible parse



The task: choosing the most plausible parse



Statistical parsing

- Find the most plausible parse of an input string given all possible parses
- We need a scoring function, for each parse, given the input
- We typically use probabilities for scoring, task becomes finding the parse (or tree), t, given the input string w

$$t_{best} = \underset{t}{arg \max} P(t \mid \boldsymbol{w})$$

 Note that some ambiguities need a larger context than the sentence to be resolved correctly

Probabilistic context free grammars (PCFG)

A probabilistic context free grammar is specified by,

 Σ is a set of terminal symbols

N is a set of non-terminal symbols

 $S \in N$ is a distinguished *start* symbol

R is a set of rules of the form

$$A \rightarrow \alpha$$
 [p]

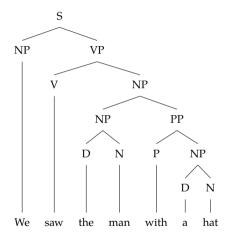
where A is a non-terminal, α is string of terminals and non-terminals, and p is the probability associated with the rule

- The grammar accepts a sentence if it can be derived from S with rules $R_1 \dots R_k$
- The probability of a parse t of input string \mathbf{w} , $P(t | \mathbf{w})$, corresponding to the *derivation* $R_1 \dots R_k$ *is*

$$P(t \mid \boldsymbol{w}) = \prod_{1}^{k} p_{i}$$

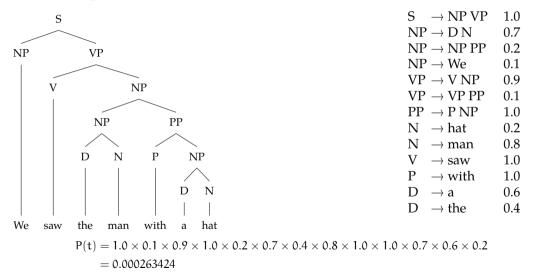
where p_i is the probability of the rule R_i

PCFG example (1)

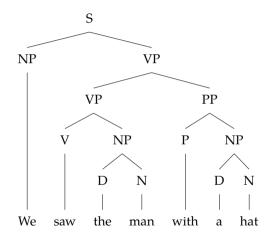


S	$\to NP \ VP$	1.0
NP	\rightarrow D N	0.7
NP	\rightarrow NP PP	0.2
NP	\rightarrow We	0.1
VP	$\to V \ NP$	0.9
VP	$\to VP\ PP$	0.1
PP	$\to P \ NP$	1.0
N	\rightarrow hat	0.2
N	\rightarrow man	0.8
V	\rightarrow saw	1.0
P	\rightarrow with	1.0
D	\rightarrow a	0.6
D	\rightarrow the	0.4

PCFG example (1)

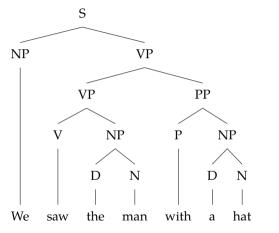


PCFG example (2)



S	$\rightarrow NP \ VP$	1.0
NP	$\to DN$	0.7
NP	$\to NP\ PP$	0.2
NP	$\rightarrow \text{We}$	0.1
VP	$\to V \ NP$	0.9
VP	$\to VP\ PP$	0.1
PP	$\to P \ NP$	1.0
N	\rightarrow hat	0.2
N	\rightarrow man	0.8
V	\rightarrow saw	1.0
P	$\rightarrow with \\$	1.0
D	\rightarrow a	0.6
D	\rightarrow the	0.4

PCFG example (2)



S	$\to NP \ VP$	1.0
NP	$\to DN$	0.7
NP	$\to NP\ PP$	0.2
NP	\rightarrow We	0.1
VP	$\to V \ NP$	0.9
VP	$\to \mathrm{VP}\mathrm{PP}$	0.1
PP	$\to P \ NP$	1.0
N	\rightarrow hat	0.2
N	\rightarrow man	0.8
V	\rightarrow saw	1.0
P	\rightarrow with	1.0
D	\rightarrow a	0.6
D	\rightarrow the	0.4

$$P(t) = 1.0 \times 0.1 \times 0.1 \times 0.9 \times 1.0 \times 0.7 \times 0.4 \times 0.8 \times 1.0 \times 1.0 \times 0.7 \times 0.6 \times 0.2$$

= 0.0001693440

Where do the rule probabilities come from?

- Supervised: estimate from a treebank, e.g., using maximum likelihood estimation
- Unsupervised: expectation-maximization (EM)

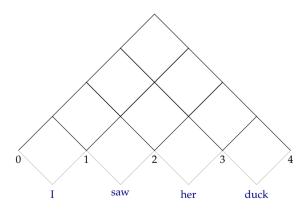
PCFGs - an interim summary

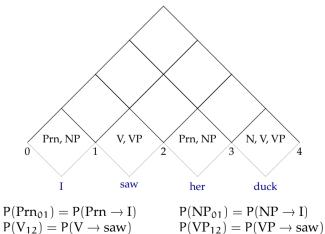
- PCFGs assign probabilities to parses based on CFG rules used during the parse
- PCFGs assume that the rules are independent
- PCFGs are generative models, they assign probabilities to P(t, w), we can calcuate the probability of a sentence by

$$P(w) = \sum_{t} P(t, w) = \sum_{t} P(t)$$

PCFG chart parsing

- Both CKY and Earley algorithms can be adapted to PCFG parsing
- CKY matches PCFG parsing quite well
 - to get the best parse, store the constituent with the highest probability in every cell of the chart
 - to get n-best best parse (beam search), store the n-best constituents in every cell in the chart





. . .

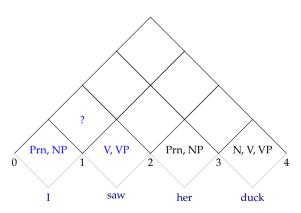
$$P(Prn_{01}) = P(Prn \rightarrow I)$$

$$P(V_{12}) = P(V \rightarrow saw)$$

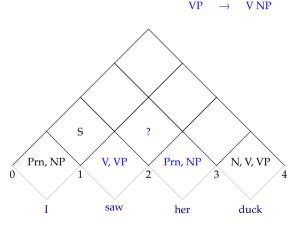
$$P(NP_{01}) = P(NP \rightarrow I)$$

$$P(VP_{12}) = P(VP \rightarrow saw)$$

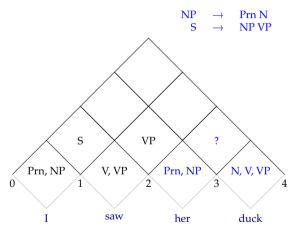
Ç. Çöltekin, SfS / University of Tübingen



 $P(S_{02} \Rightarrow NP_{01}VP_{12}) = P(NP_{01})P(VP_{12})P(S \rightarrow NP VP)$



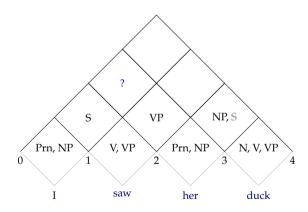
$$P(VP_{13} \Rightarrow V_{12}NP_{23}) = P(V_{12})P(NP_{23})P(VP \rightarrow V NP)$$

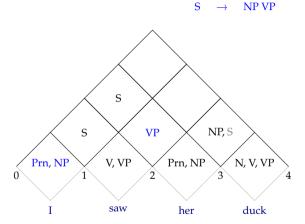


$$P(NP_{24} \Rightarrow Prn_{23}N_{34}) = P(Prn_{23})P(N_{34})P(Prn \rightarrow Prn N)$$

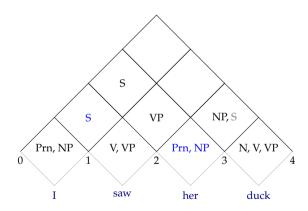
$$P(S_{24} \Rightarrow NP_{23}VP_{34}) = P(NP_{23})P(VP_{34})P(S \rightarrow NP VP)$$

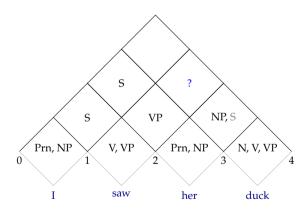
Ç. Çöltekin, SfS / University of Tübingen

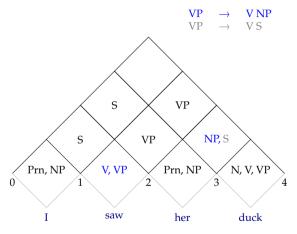




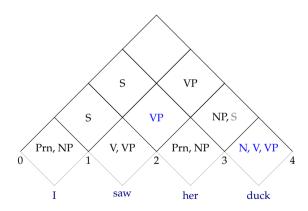
 $P(S_{03} \Rightarrow NP_{01}VP_{23}) = P(NP_{01})P(VP_{13})P(S \rightarrow NP\ VP)$

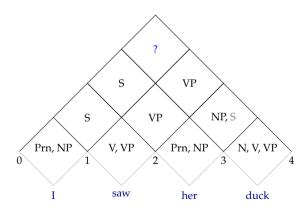


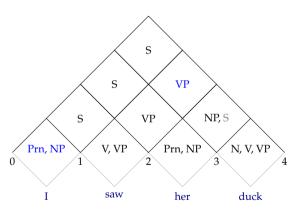




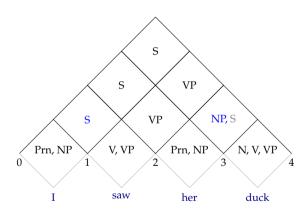
 $P(VP_{14} \Rightarrow V_{12}NP_{24}) = P(V_{12})P(NP_{24})P(VP \rightarrow V NP)$

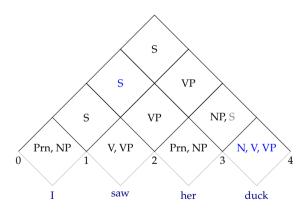






 $P(S_{14} \Rightarrow NP_{01}VP_{14}) = P(NP_{01})P(VP_{14})P(S \rightarrow NP\ VP)$





What makes the difference in PCFG probabilities?

$S \Rightarrow NP VP$	1.0	$S \Rightarrow NP VP$	1.0
$NP \Rightarrow We$	0.1	$NP \Rightarrow We$	0.1
$VP \Rightarrow VP PP$	0.1	$VP \Rightarrow V NP$	0.7
$VP \Rightarrow V NP$	0.8	$V \Rightarrow saw$	1.0
$V \Rightarrow saw$	1.0	$NP \Rightarrow NP PP$	0.2
$NP \Rightarrow D N$	0.7	$NP \Rightarrow D N$	0.7
$D \Rightarrow the$	0.4	$D \Rightarrow the$	0.4
$N \Rightarrow man$	0.8	$N \Rightarrow man$	0.8
$PP \Rightarrow P NP$	1.0	$PP \Rightarrow P NP$	1.0
$P \Rightarrow with$	1.0	$P \Rightarrow with$	1.0
$NP \Rightarrow D N$	0.7	$NP \Rightarrow D N$	0.7
$D \Rightarrow a$	0.6	$D \Rightarrow a$	0.6
$N \Rightarrow hat$	0.2	$N \Rightarrow hat$	0.2

What makes the difference in PCFG probabilities?

1.0
0.1
0.7
1.0
0.2
0.7
0.4
0.8
1.0
1.0
0.7
0.6
0.2
1 0 0

The parser's choice would not be affected by lexical items!

What is wrong with PCFGs?

- In general: the assumption of independence
- \bullet The parents affect the correct choice for children, for example, in English NP \to Prn is more likely in the subject position
- The lexical units affect the correct decision, for example:
 - We eat the pizza with hands
 - We eat the pizza with mushrooms
- Additionally: PCFGs use local context, difficult to incorporate arbitrary/global features for disambiguation

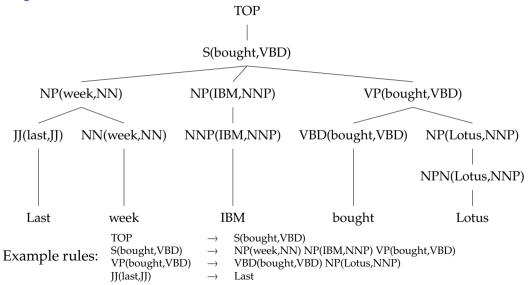
Solutions to PCFG problems

- Independence assumptions can be relaxed by either
 - Parent annotation
 - Lexicalization
- To condition on arbitrary/global information: discriminative models
- Most practical PCFG parsers are lexicalized, and often use a re-ranker conditioning on other (global) features

Lexicalizing PCFGs

- Replace non-terminal X with X(h), where h is a tuple with the lexical word and its POS tag
- Now the grammar can capture (head-driven) lexical dependencies
- But number of nonterminals grow by $|V| \times |T|$
- Estimation becomes difficult (many rules, data sparsity)
- Some treebanks (e.g., Penn Treebank) do not annotate heads, they are automatically annotated (based on heuristics)

Example lexicalized derivation



38 / 73

Evaluating the parser output

- A parser can be evaluated
 extrinsically based on it's effect on a task (e.g., machine translation) where it
 is used
 intrinsically based on the match with ideal parsing
- The typically evaluation (intrinsic) is based on a *gold standard* (GS)
- Exact match is often
 - very difficult to achieve (think about a 50-word newspaper sentence)
 - not strictly necessary (recovering parts of the parse can be useful for many purposes)

Parser evaluation metrics

• Common evaluation metrics are (PARSEVAL):

```
precision the ratio of correctly predicted nodes recall the nodes (in GS) that are predicted correctly f-measure harmonic mean of precision and recall \left(\frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}\right)
```

The measures can be

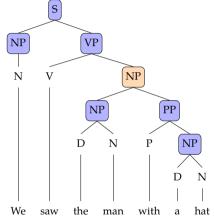
unlabled the spans of the nodes are expected to match labeled the node label should also match

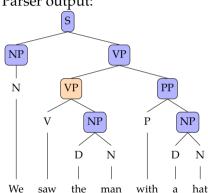
• Crossing brackets (or average non-crossing brackets)

```
( We ( saw ( them ( with binoculars ))))
( We (( saw them ) ( with binoculars )))
```

• Measures can be averaged per constituent (micro average), or over sentences (macro average)

PARSEVAL example Gold standard:





precision =
$$\frac{6}{7}$$
 recall = $\frac{6}{7}$ f-measure = $\frac{6}{7}$

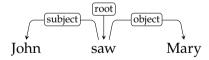
Ç. Çöltekin, SfS / University of Tübingen

41 / 73

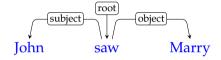
Problems with PARSEVAL metrics

- PARSEVAL metrics favor certain type of structures
 - Results are surprisingly well for flat tree structures (e.g., Penn treebank)
 - Results of some mistakes are catastrophic (e.g., low attachment)
- Not all mistakes are equally important for semantic distinctions
- Some alternatives:
 - Extrinsic evaluation
 - Evaluation based on extracted dependencies

- Dependency grammars gained popularity in (particularly in computational) linguistics rather recently, but their roots can be traced back to a few thousand years
- The main idea is capturing the relation between the words, rather than grouping them into (abstract) constituents



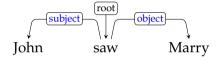
Note: like constituency grammars, we will not focus on a particular dependency formalism, but discuss it in general in relation to parsing.



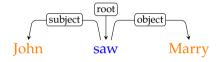
• No constituents, units of syntactic structure are words



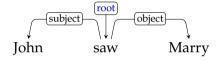
- No constituents, units of syntactic structure are words
- The structure of the sentence is represented by asymmetric binary relations between syntactic units



- No constituents, units of syntactic structure are words
- The structure of the sentence is represented by asymmetric binary relations between syntactic units
- The links (relations) have labels (dependency types)



- No constituents, units of syntactic structure are words
- The structure of the sentence is represented by asymmetric binary relations between syntactic units
- The links (relations) have labels (dependency types)
- Each relation defines one of the words as the head and the other as dependent



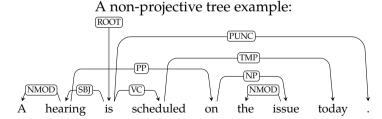
- No constituents, units of syntactic structure are words
- The structure of the sentence is represented by asymmetric binary relations between syntactic units
- The links (relations) have labels (dependency types)
- Each relation defines one of the words as the head and the other as dependent
- Often an artificial root node is used for computational convenience

Projective vs. non-projective dependencies

- If a dependency graph has no crossing edges, it is said to be *projective*, otherwise *non-projective*
- Non-projectivity stems from long-distance dependencies and free word order

Projective vs. non-projective dependencies

- If a dependency graph has no crossing edges, it is said to be *projective*, otherwise *non-projective*
- Non-projectivity stems from long-distance dependencies and free word order



Parsing with dependency grammars

- Projective parsing can be done in polynomial time
- Non-projective parsing is NP-hard (without restrictions)
- For both, it is a common practice to use greedy (e.g., linear time) algorithms

Dependency grammar: definition

A dependency grammar is a tuple (V, A)

V is a set of nodes corresponding to the (syntactic) words (we implicitly assume that words have indexes)

A is a set of arcs of the form (w_i, r, w_j) where

 $w_i \in V$ is the head

r is the type of the relation (arc label)

 $w_j \in V$ is the dependent

This defines a directed graph.

Dependency grammars: common assumptions

- Every word has a single head
- The dependency graphs are acyclic
- The graph is connected
- With these assumptions, the representation is a tree
- Note that these assumptions are not universal but common for dependency parsing

Dependency parsing

- Dependency parsing has many similarities with context-free parsing (e.g., trees)
- They also have some different properties (e.g., number of edges and depth of trees are limited)
- Dependency parsing can be
 - grammar-driven (hand crafted rules or constraints)
 - data-driven (rules/model is learned from a treebank)
- There are two main approaches:
 - Graph-based similar to context-free parsing, search for the best tree structure Transition-based similar to shift-reduce parsing (used for programming language parsing), but using greedy search for the best transition sequence

Transition based parsing

- Inspired by shift-reduce parsing, single pass over the input
- Use a stack and a buffer of unprocessed words
- Parsing as predicting a sequence of transitions like

Left-Arc: mark current word as the head of the word on top of the stack Right-Arc: mark current word as a dependent of the word on top of the stack Shift: push the current word to the stack

- Algorithm terminates when all words in the input are processed
- The transitions are not naturally deterministic, best transition is predicted using a machine learning method

(yamada2003; nivre2004)

A typical transition system

$$(\sigma \mid w_i), \quad w_j \mid \beta, \quad A)$$
stack buffer buffer

$$\text{Left-Arc}_r \colon (\sigma | w_i, w_j | \beta, A) \Rightarrow (\sigma \quad , w_j | \beta, A \cup \{(w_j, r, w_i)\})$$

- pop w_i,
- add arc (w_i, r, w_i) to A (keep w_i in the buffer)

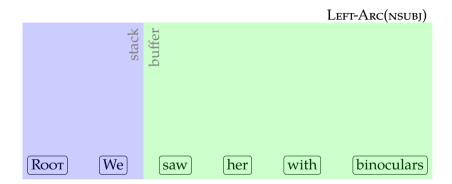
Right-Arc_r:
$$(\sigma|w_i, w_j|\beta, A) \Rightarrow (\sigma, w_i|\beta, A \cup \{(w_i, r, w_j)\})$$

- pop w_i,
- add arc (w_i, r, w_j) to A,
- move w_i to the buffer

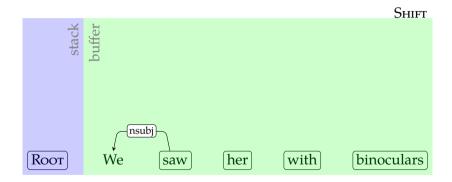
Shift:
$$(\sigma, w_j | \beta, A) \Rightarrow (\sigma | w_j, \beta, A)$$

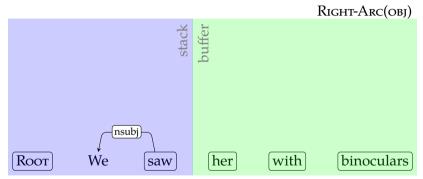
- push w_i to the stack
- remove it from the buffer

(kubler2009)

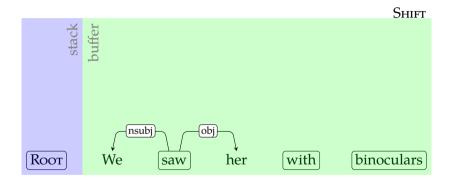


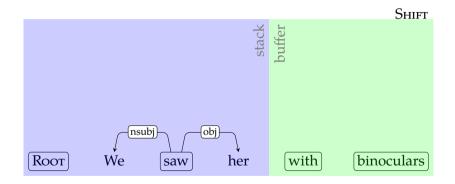
52 / 73

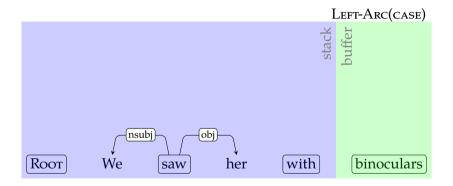


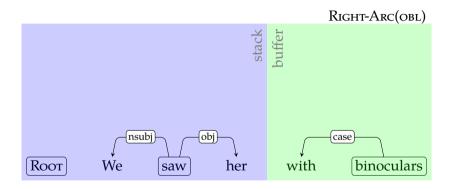


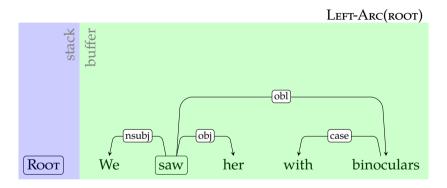
Note: We need Shift for NP attachment.

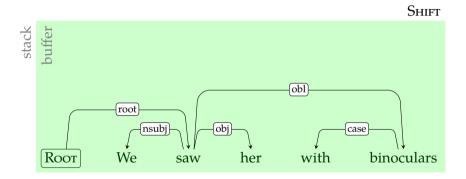


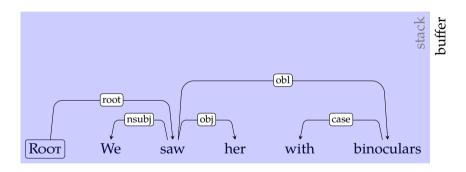












Ç. Çöltekin, SfS / University of Tübingen

Making transition decisions

- In classical shift-reduce parsing the actions are deterministic
- In transition-based dependency parsing, we need to choose among all possible transitions
- The typical method is to train a (discriminative) classifier on features extracted from gold-standard *transition sequences*
- Almost any machine learning method method is applicable. Common choices include
 - Memory-based learning
 - Support vector machines
 - (Deep) neural networks

Features for transition-based parsing

- The features come from the parser configuration, for example
 - The word at the stack top (or nth from stack top)
 - The first/second word on the buffer
 - Right/left dependents of the word on top of the stack/buffer
- For each possible 'address', we can make use of features like
 - Word form, lemma, POS tag, morphological features, word embeddings
 - Dependency relations (w_i, r, w_i) triples
- Note that for some 'address'-'feature' combinations and in some configurations the values may be missing

The training data

- We want features like.
 - lemma[Stack] = duck
 - POS[Stack] = NOUN
- But treebank gives us:

```
Read
                VERB
                       VB
                           Mood=Imp|VerbForm=Fin 0 root
          read
                ADV
                       RB
                                                  1 advmod
    on
          on
                PART
                       TO
    to
          to
                                                  4 mark
    learn learn VERB
                           VerbForm=Inf
                                                  1 xcomp
    the
          the
                DET
                      DT
                           Definite=Def
                                                  6 det
6
   facts fact
                NOUN
                      NNS Number=Plur
                                                  4 obi
                PUNCT .
                                                  1 punct
```

• The treebank has the outcome of the parser, but not of our features

The training data

- The features for transition-based parsing have to be from *parser configurations*
- The data (treebanks) need to be preprocessed for obtaining the training data
- Construct a transition sequence by parsing the sentences, and using treebank annotations (the set A) as an 'oracle'
- Decide for

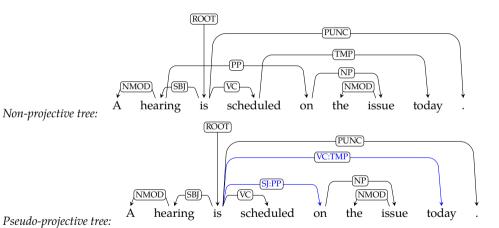
```
Left-Arc<sub>r</sub> if (\beta[0], r, \sigma[0]) \in A
Right-Arc<sub>r</sub> if (\sigma[0], r, \beta[0]) \in A
and all dependents of \beta[0] are attached
Shift otherwise
```

• There may be multiple sequences that yield the same dependency tree, the above defines a 'canonical' transition sequence

Non-projective parsing

- The transition-based parsing we defined so far works only for projective dependencies
- One way to achieve (limited) non-projective parsing is to add special Left-Arc and Right-Arc transitions to/from non-top words from the stack
- Another method is pseudo-projective parsing:
 - preprocessing to 'projectivize' the trees before training
 - The idea is to attach the dependents to a higher level head that preserves
 projectivity, while marking it on the new dependency label
 - postprocessing for restoring the projectivity after parsing
 - Re-introduce projectivity for the marked dependencies

Pseudo-projective parsing



Transition based parsing: summary/notes

- Linear time, greedy parsing
- Can be extended to non-projective dependencies
- One can use arbitrary features
- We need some extra work for generating gold-standard transition sequences from treebanks
- Early errors propagate, transition-based parsers make more mistakes on long-distance dependencies
- The greedy algorithm can be extended to beam search for better accuracy (still linear time complexity)

Graph-based parsing: preliminaries

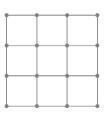
- Enumerate all possible dependency trees
- Pick the best scoring tree
- Features are based on limited parse history (like CFG parsing)
- Two well-known flavors:
 - Maximum (weight) spanning tree (MST)
 - Chart-parsing based methods

eisner1996; mcdonald2005

MST parsing: preliminaries

Spanning tree of a graph

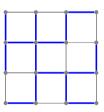
• Spanning tree of a connected graph is a sub-graph which is a tree and traverses all the nodes



MST parsing: preliminaries

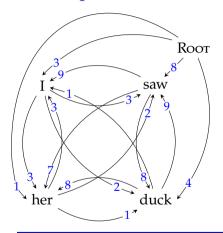
Spanning tree of a graph

- Spanning tree of a connected graph is a sub-graph which is a tree and traverses all the nodes
- For fully-connected graphs, the number of spanning trees are exponential in the size of the graph
- The problem is well studied
- There are efficient algorithms for enumerating and finding the optimum spanning tree on weighted graphs

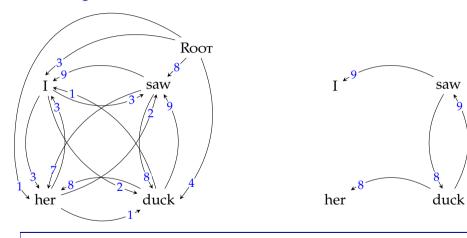


MST algorithm for dependency parsing

- For directed graphs, there is a polynomial time algorithm that finds the minimum/maximum spanning tree (MST) of a fully connected graph (Chu-Liu-Edmonds algorithm)
- The algorithm starts with a dense/fully connected graph
- Removes edges until the resulting graph is a tree



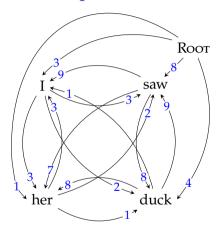
For each node select the incoming arc with highest weight

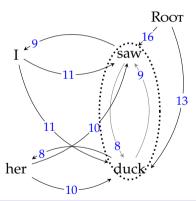


Detect cycles, contract them to a 'single node'

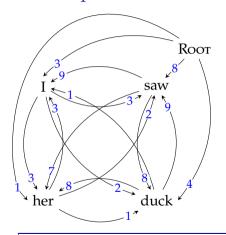
Root

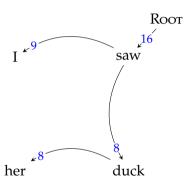
saw





Pick the best arc into the combined node, break the cycle





Once all cycles are eliminated, the result is the MST

Properties of the MST parser

- The MST parser is non-projective
- There is an alrgorithm with $O(n^2)$ time complexity ${}_{\mbox{\scriptsize (tarjan1977)}}$
- The time complexity increases with typed dependencies (but still close to quadratic)
- The weights/parameters are associated with edges (often called 'arc-factored')
- We can learn the arc weights directly from a treebank
- However, it is difficult to incorporate non-local features

CKY for dependency parsing

- The CKY algorithm can be adapted to projective dependency parsing
- For a naive implementation the complexity increases drastically $O(n^6)$
 - Any of the words within the span can be the head
 - Inner loop has to consider all possible splits
- For projective parsing, the observation that the left and right dependents of a head are independently generated reduces the comlexity to $O(n^3)$

(eisner1997)

Non-local features

- The graph-based dependency parsers use edge-based features
- This limits the use of more global features
- Some extensions for using 'more' global features are possible
- This often leads non-projective parsing to become intractable

External features

- For both type of parsers, one can obtain features that are based on unsupervised methods such as
 - clustering
 - dense vector representations (embeddings)
 - alignment/transfer from bilingual corpora/treebanks

(koo2008)

Errors from different parsers

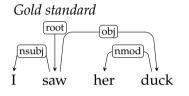
- Different parsers make different errors
 - Transition based parsers do well on local arcs, worse on long-distance arcs
 - Graph based parsers tend to do better on long-distance dependencies
- Parser combination is a good way to combine the powers of different models.
 Two common methods
 - Majority voting: train parsers separately, use the weighted combination of their results
 - Stacking: use the output of a parser as features for another

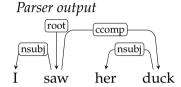
(mcdonald2007; sagae2006; nivre2008integrate)

Evaluation metrics for dependency parsers

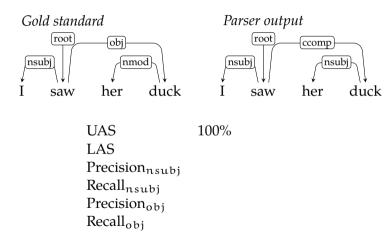
- Like CF parsing, exact match is often too strict
- Attachment score is the ratio of words whose heads are identified correctly.
 - Labeled attachment score (LAS) requires the dependency type to match
 - *Unlabeled attachment score* (UAS) disregards the dependency type
- *Precision/recall/F-measure* often used for quantifying success on identifying a particular dependency type

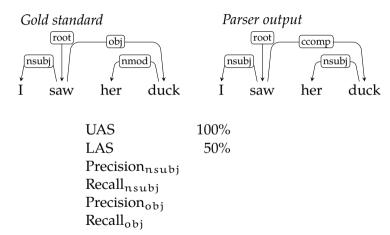
precision is the ratio of correctly identified dependencies (of a certain type) recall is the ratio of dependencies in the gold standard that parser predicted correctly f-measure is the harmonic mean of precision and recall $\left(\frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}\right)$

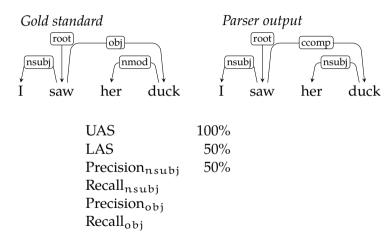


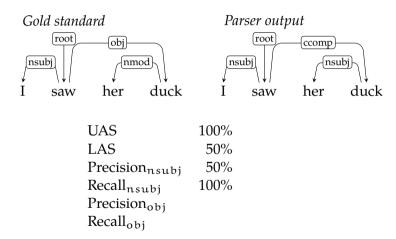


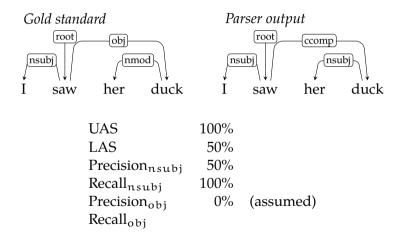
UAS LAS Precision_{nsubj} Recall_{nsubj} Precision_{obj} Recall_{obi}

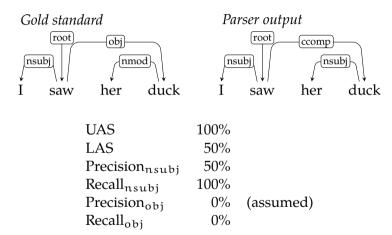












Averaging evaluation scores

- As in context-free parsing, average scores can be macro-average or sentence-based micro-average or word-based
- Consider a two-sentence test set with

	words	correct
sentence 1	30	10
sentence 2	10	10

- word-based average attachment score:
- sentence-based average attachment score:

Averaging evaluation scores

- As in context-free parsing, average scores can be macro-average or sentence-based micro-average or word-based
- Consider a two-sentence test set with

	words	correct
sentence 1	30	10
sentence 2	10	10

- word-based average attachment score: 50% (20/40)
- sentence-based average attachment score: 66% ((1 + 1/3)/2)

Dependency parsing: summary

- Dependency relations are often semantically easier to interpret
- It is also claimed that dependency parsers are more suitable for parsing free-word-order languages
- Dependency relations are between words, no phrases or other abstract nodes are postulated
- Two general methods: transition based greedy search, non-local features, fast, less accurate graph based exact search, local features, slower, accurate (within model limitations)
- Combination of different methods often result in better performance
- Non-projective parsing is more difficult
- Most of the recent parsing research has focused on better machine learning methods (mainly using neural networks)

Next

Mon/Fri Wrap-up/summary

Where to go from here?

- Textbook includes good coverage of constituency grammars and parsing, online 3rd edition includes a chapter on dependency parsing as well
- The book by **kubler2009** is an accessible introduction to (statistical) dependency parsing
- For more on linguistic and mathematical foundations of parsing:
 - muller2016 is a new open-source text book on Grammar formalisms.
 - aho1972v1 is the classical reference (available online) for parsing (programming languages) and also includes discussion of grammar classes in the Chomsky hierarchy. A more up-to-date alternative is aho2007.
 - There is a brief introductory section on dependency grammars in kubler2009, for a classical reference see tesniere2015, English translation of the original version (tesniere1959).

Pointers to some treebanks

Treebanks are the main resource for statistical parsing. A few treebank-related resources to have a look at until next time:

• Universal dependencies project, documentation, treebanks: http://universaldependencies.org/

• Tübingen treebanks:

TüBa-D/Z written German TüBa-D/S spoken German TüBa-E/S spoken English TüBa-J/S spoken Japanese

available from http://www.sfs.uni-tuebingen.de/en/ascl/resources/corpora.html

- TüNDRA a treebank search and visualization application with the above treebanks and few more
 - Main version:

```
https://weblicht.sfs.uni-tuebingen.de/Tundra/
```

New version (beta):

https://weblicht.sfs.uni-tuebingen.de/tundra-beta/

CKY algorithm

```
function CKY(words, grammar)
   for i \leftarrow 1 to Length(words) do
        table[i-1,i] \leftarrow \{A|A \rightarrow words[i] \in grammar\}
        for i \leftarrow j-1 downto 0 do
            for k \leftarrow i + 1 to j - 1 do
                table[i, j] \leftarrow table[i, j] \cup
                                \{A|A \rightarrow BC \in \text{grammar and } \}
                                   B \in table[i, k] and
                                   C \in table[k, j]
    return table
```

Even more examples

(newspaper headlines)

- FARMER BILL DIES IN HOUSE
- TEACHER STRIKES IDLE KIDS
- SOUAD HELPS DOG BITE VICTIM
- BAN ON NUDE DANCING ON GOVERNOR'S DESK
- PROSTITUTES APPEAL TO POPE
- KIDS MAKE NUTRITIOUS SNACKS
- DRUNK GETS NINE MONTHS IN VIOLIN CASE.
- MINERS REFUSE TO WORK AFTER DEATH

```
\rightarrow NP VP
      \rightarrow Aux X
X \rightarrow NP VP
NP \rightarrow Det N
NP \rightarrow she \mid her
NP \rightarrow NP PP
VP \ \to V \ NP
VP \rightarrow duck \mid saw \mid ...
VP \rightarrow VP PP
PP \ \to Prp \ NP
N \rightarrow duck
N \rightarrow park
N \rightarrow parks
V \rightarrow duck
V \rightarrow ducks
      \rightarrow saw
Prn \rightarrow she \mid her
```

she duck saw a

Prp → in | with Det → suramer theester 2019

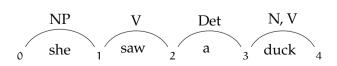
saw

a

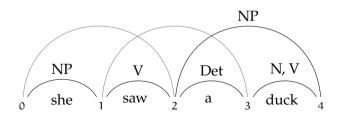
duck

```
\rightarrow NP VP
      \rightarrow Aux X
X \rightarrow NP VP
NP \rightarrow Det N
NP \rightarrow she \mid her
NP \rightarrow NP PP
VP \ \to V \ NP
VP \rightarrow duck \mid saw \mid ...
VP \rightarrow VP PP
PP \ \to Prp \ NP
N \rightarrow duck
N \rightarrow park
N \rightarrow parks
V \rightarrow duck
V \rightarrow ducks
      \rightarrow saw
Prn \rightarrow she \mid her
Prp \rightarrow in \mid with
Det Suramer theester 2019
```

she



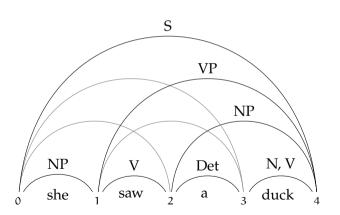
 \rightarrow NP VP \rightarrow Aux X \rightarrow NP VP $NP \rightarrow Det N$ $NP \rightarrow she \mid her$ $NP \rightarrow NP PP$ $VP \rightarrow V NP$ $VP \rightarrow duck \mid saw \mid ...$ $VP \rightarrow VP PP$ $PP \ \to Prp \ NP$ \rightarrow duck $N \rightarrow park$ $N \rightarrow parks$ \rightarrow duck \rightarrow ducks \rightarrow saw $Prn \rightarrow she \mid her$ $Prp \rightarrow in \mid with$ Det Suramer theester 2019



```
\rightarrow NP VP
      \rightarrow Aux X
X \rightarrow NP VP
NP \rightarrow Det N
NP \rightarrow she \mid her
NP \rightarrow NP PP
VP \ \to V \ NP
VP \rightarrow duck \mid saw \mid ...
VP \rightarrow VP PP
PP \rightarrow Prp NP
N \rightarrow duck
N \rightarrow park
N \rightarrow parks
V \rightarrow duck
      \rightarrow ducks
```

 \rightarrow saw

 $Prn \rightarrow she \mid her$ $Prp \rightarrow in \mid with$ $Det \rightarrow sua_{mer} the_{ester 2019}$



```
\begin{array}{lll} S & \rightarrow NP \ VP \\ S & \rightarrow Aux \ X \\ X & \rightarrow NP \ VP \\ NP & \rightarrow Det \ N \\ NP & \rightarrow she \mid her \\ NP & \rightarrow NP \ PP \\ VP & \rightarrow V \ NP \\ VP & \rightarrow duck \mid saw \mid ... \\ VP & \rightarrow VP \ PP \end{array}
```

 $PP \rightarrow Prp NP$

 $\begin{array}{ll} N & \rightarrow duck \\ N & \rightarrow park \\ N & \rightarrow parks \\ V & \rightarrow duck \end{array}$

 $egin{array}{ll} V &
ightarrow ducks \ V &
ightarrow saw \end{array}$

 $\operatorname{Prn} \to \operatorname{she} \mid \operatorname{her} \operatorname{Prp} \to \operatorname{in} \mid \operatorname{with}$