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Supervised learning

• The methods we studied so far are instances of supervised
learning

• In supervised learning, we have a set of predictors x, and
want to predict a response or outcome variable y

• During training, we have both input and output variables
• Training consist of estimating parameters w of a model
• During prediction, we are given x and make predictions

based on model we learned
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Supervised learning: regression

x

y

• The response (outcome)
variable (y) is a
quantitative variable.

• Given the features (x) we
want to predict the value
of y

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2019 2 / 48

Recap Clustering Density estimation PCA Autoencoders

Supervised learning: classification
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• The response (outcome) is
a label. In the example:
positive + or negative −

• Given the features (x1 and
x2), we want to predict the
label of an unknown
instance ?
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Supervised learning
how do we learn?

• The aim is to estimate a set of parametersw during training
• We define an error function, and find the parameter values

that minimize the error
• The error function is defined based on the true labels in the

training data
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Unsupervised learning

• In unsupervised learning, we do not have labels in our
training data

• Our aim is to find useful patterns/structure in the data
– for exploratory study of the data
– for augmenting / complementing supervised methods

• Close relationships with ‘data mining’, ‘data science /
analytics’, ‘knowledge discovery’

• All unsupervised methods can be cast as graphical models
with hidden variables

• Evaluation is difficult: we do not have ‘true’ labels/values
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Today’s lecture

• Clustering: find related groups of instances
• Density estimation: find a probability distribution that

explains the data
• Dimensionality reduction: find an accurate/useful lower

dimensional representation of the data
• Unsupervised learning in ANNs (RBMs, autoencoders)
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Clustering: why do we do it?

• The aim is to find groups of instances/items that are
similar to each other

• Applications include
– Clustering languages, dialects for determining their

relations
– Clustering (literary) texts, for e.g., authorship attribution
– Clustering words for e.g., better parsing
– Clustering documents, e.g., news into topics
– …
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Clustering in two dimensional space

x1

x2

• Unlike classification, we do
not have labels

• We want to find ‘natural’
groups in the data

• Intuitively, similar or closer
data points are grouped
together
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Similarity and distance

• The notion of distance (similarity) is important in
clustering. A distance measure D,

– is symmetric: D(a,b) = D(b,a)
– non-negative: D(a,b) ⩾ 0

for all a,b, and it D(a,b) = 0 iff a = b

– obeys triangle inequality: D(a,b) +D(b, c) ⩾ D(a, c)

• The choice of distance is application specific
• We will often face with defining distance measures

between linguistic units (letters, words, sentences,
documents, …)
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Distance measures in Euclidean space

• Euclidean distance:

∥a− b∥ =

√√√√ k∑
j=1

(aj − bj)2

• Manhattan distance:

∥a− b∥1 =

k∑
j=1

|aj − bj|

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2019 10 / 48

Recap Clustering Density estimation PCA Autoencoders

How to do clustering
Most clustering algorithms try to minimize the scatter within
each cluster. Which is equivalent to maximizing the scatter
between clusters.

x1

x2

K∑
k=1

∑
a∈Ck

∑
b∈Ck

d(a,b)

K∑
k=1

∑
a∈Ck

∑
b̸∈Ck

d(a,b)
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K-means algorithm

K-means is a popular method for clustering.
1. Randomly choose centroids, m1, . . . ,mK, representing K

clusters
2. Repeat until convergence

– Assign each data point to the cluster of the nearest centroid
– Re-calculate the centroid locations based on the

assignments
Effectively, we are finding a local minimum of the sum of
squared Euclidean distance within each cluster

1

2

K∑
k=1

∑
a∈Ck

∑
b∈Ck

∥a− b∥2
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K-means clustering: visualization

x1

x2

• The data
• Set cluster centroids

randomly
• Assign data points to the

closest centroid
• Recalculate the centroids
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K-means: some issues

• K-means requires the data to be in an Euclidean space
• K-means is sensitive to outliers
• The results are sensitive to initialization

– There are some smarter ways to select initial points
– One can do multiple initializations, and pick the best

(with lowest within-group squares)
• It works well with approximately equal-size round-shaped

clusters
• We need to specify number of clusters in advance
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How many clusters?

• The number of clusters is defined for some problems, e.g.,
classifying news into a fixed set of topics/interests

• For others, there is no clear way to select the best number
of clusters

• The error (within cluster scatter) always decreases with
increasing number of clusters, using a test set or cross
validation is not useful either

• A common approach is clustering for multiple K values,
and picking where there is an ‘elbow’ in the graph against
the error function
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How many clusters?

K

J(w)
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This plot is sometimes called a scree plot.
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K-medoids

• K-medoids algorithm is an alternation of K-means
• Instead of calculating centroids, we try to find most typical

data point (medoids) at each iteration
• K-medoids can work with distances, does not need feature

vectors to be in an Euclidean space
• It is less sensitive to outliers
• It is computationally more expensive than K-means
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Hierarchical clustering

• Instead of a flat division to clusters as in K-means,
hierarchical clustering builds a hierarchy based on
similarity of the data points

• There are two main ‘modes of operation’:
Bottom-up or agglomerative clustering

• starts with individual data points,
• merges the clusters until all data is in a single cluster

Top-down or divisive clustering
• starts with a single cluster,
• and splits until all leaves are single data points
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Hierarchical clustering

• Hierarchical clustering operates on differences (or
similarities)

• The result is a binary tree called dendrogram
• Dendrograms are easy to interpret (especially if data is

hierarchical)
• The algorithm does not commit to the number of clusters K

from the start, the dendrogram can be ‘cut’ at any height
for determining the clusters
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Agglomerative clustering

1. Compute the
similarity/distance matrix

2. Assign each data point to
its own cluster

3. Repeat until no clusters left
to merge

– Pick two clusters that
are most similar to each
other

– Merge them into a single
cluster

1 2 3 4 5
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Agglomerative clustering demonstration

1 2 3 4 5
x1

x2

1 2

3

4

5
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How to calculate between cluster distances

Complete maximal
inter-cluster distance

Single minimal
inter-cluster distance

Average mean inter-cluster
distance

Centroid distance between the
centroids

x1

x2

1 2

3

4

5

Note: we only need distances, (feature) vectors are not necessary
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Clustering evaluation

Evaluating clustering results is often non-trivial
• Internal evaluation is based a metric that aims to indicate

‘good clustering’: e.g., Dunn index, gap statistic, silhouette
• External metrics can be useful if we have labeled test data:

e.g., V-measure, B3ed F-score
• The results can be tested on the target application: e.g.,

word-clusters evaluated based on their effect on parsing
accuracy

• Human judgments, manual evaluation – ‘looks good to me’
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Clustering evaluation
internal metric example: silhouette

si =
b(i) − a(i)

max(a(i),b(i))

where
a(i) average distance between object i

and and objects in the same
cluster

b(i) average distance between object i
and and objects in the closest
cluster x1

x2

1 2

3

4

5
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Clustering evaluation
external metrics: general intution

• We want clusters that
contain members of a
single gold-standard class
(homogeniety)

• We want all members of a
class to be in a single
cluster (completeness)

Cluster 1 Cluster 2 Cluster 3

Note the similarity with precision and recall.
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Clustering: some closing notes

• We do not have proper evaluation procedures for
clustering results (for unsupervised learning in general)

• Some clustering methods are unstable, slight changes in
the data or parameter choices may change the results
drastically

• Approaches against instability include some validation
methods, or producing ‘probabilistic’ dendrograms by
running clustering with different options
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Density estimation

• K-means treats all data points in a cluster equally
• A ‘soft’ version of K-means is density estimation for

Gaussian mixtures, where
– We assume the data comes from a mixture of K Gaussian

distributions
– We try to find the parameters of each distribution (instead

of centroids) that maximizes the likelihood of the data
• Unlike K-means, mixture of Gaussians assigns probabilities

for each data point belonging to one of the clusters
• It is typically estimated using the

expectation-maximization (EM) algorithm
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Density estimation using the EM algorithm

• The EM algorithm (or its variations) is used in learning
models with latent/hidden variables

• It is closely related to the K-means algorithm
1. Initialize the parameters (e.g., randomly) of K multivariate

normal distributions (µ,Σ)
2. Iterate until convergence:
E-step Given the parameters, compute the membership ‘weights’,

the probability of each data point belonging to each
distribution

M-step Re-estimate the mixture density parameters using the
calculated membership weights in the E-step
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Principal component Analysis

• Principal component analysis (PCA) is a method of
dimensionality reduction

• PCA maps the original data into a lower dimensional space
by a linear transformation (rotation)

• The transformed lower-dimensional variables retain most
of the variation (=information) in the input

• PCA can be used for
– visualization
– data compression
– reducing dimensionality of features for other machine

learning methods
– eliminating noise
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PCA: a toy example

x1

x2

p1

p2

p3

-4

-4

-3

-3

-2

-2

-1

-1 00

1

1

2

2

3

3

4

4

Questions:
• How many dimensions do

we have?
• How many dimensions do

we need?
• Short divergence: calculate

the covariance matrix

Σ =

[
18
3

8

8 32
3

]

– What is the correlation
between x1 and x2?
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PCA: A toy example (2)
x1

x2

p1

p2

p3

-4

-4

-3

-3

-2

-2

-1

-1 00

1

1

2

2

3

3

4

4What if we reduce the data to:

z1

z2
p1 p2 p3

-5 0 5

Going back to the original coordinates is easy, rotate using:

A =

[
cos θ − sin θ
sin θ cos θ

]
=

[
3
5

−4
5

4
5

3
5

]

p1 = A×
[
−5

0

]
=

[
−3

−4

]
p1 = A×

[
0

0

]
=

[
0

0

]
p1 = A×

[
5

0

]
=

[
3

4

]
We can recover the original points perfectly. In this example the
inherent dimensionality of the data is only 1.
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PCA: A toy example (3)

x1
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• What if the variables were
not perfectly but strongly
correlated?

• We could still do a similar
transformation:

z1

z2
p1 p2 p3

-5 0 5

• Discarding z2 results in a
small reconstruction error:

p1 = A×
[
−5

0

]
=

[
−3

−4

]
• Note: z1 (also z2) is a

linear combination of
original variables
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Why do we want to reduce the dimensionality

• Visualizing high-dimensional data becomes possible
• If we use the data for other ML methods,

– we reduce the computation time
– we may avoid ‘the curse of dimensionality’

• Decorrelation is useful in some applications
• We compress the data (in a lossy way)
• We eliminate noise (assuming a high signal to noise ratio)
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Different views on PCA

x1

x2 PC1
• Find the direction of the

largest variance
• Find the projection with

the least reconstruction
error

• Find a lower dimensional
latent Gaussian variable
such that the observed
variable is a mapping of
the latent variable to a
higher dimensional space
(with added noise)
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Aside: your regression estimates and PCA
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How to find PCs

• When viewed as maximizing variance or reducing the
reconstruction error, we can write the appropriate objective
function and find the vectors that minimize it

• In latent variable interpretation, we can use EM as in
estimating mixtures of Gaussians

• The principal components are the eigenvectors of the
correlation matrix, where large eigenvalues correspond to
components with large variation

• A numerically stable way to obtain principal components is
doing singular value decomposition (SVD) on the input data
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PCA as matrix factorization (eigenvalue
decomposition)

• One can compute PCA by decomposing the covariance
matrix as (note Σ = XTX)

Σ = UΛUT

– the columns of U are the principal components
(eigenvectors)

– Λ is a diagonal matrix of eigenvalues
• Another option is SVD, which factorizes the input vector

(k variables× n data points) as
X = UDV∗

– U (k× k) contains the eigenvectors as before,
– D (k× n) diagonal matrix D2 = Λ

– V∗ is a n× n unitary matrix
* The above is correct for centered variables, otherwise the formulas get slightly more complicated.
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Some practical notes on PCA

• Variables need to be centered
• Scales of the variables matter, standardizing may be a good

idea depending on the units/scales of the individual
variables

• The sign/direction of the principal component (vector) is
not important

• If there are more variables than the data points, we can still
calculate the principal components, but there will be at
most n− 1 PCs

• PCA will be successful if variables are correlated, there are
extensions for dealing with nonlinearities (e.g., kernel
PCA, ICA, t-SNE)
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Unsupervised learning in ANNs

• Restricted Boltzmann machines (RBM)
similar to the latent variable models (e.g., Gaussian
mixtures), consider the representation learned by hidden
layers as hidden variables (h), and learn p(x,h) that
maximize the probability of the (unlabeled)data

• Autoencoders
train a constrained feed-forward network to predict its
output
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Restricted Boltzmann machines (RBMs)

x1

h1

x2

h2

x3

h3

x4

h4

W

h x

• RBMs are unsupervised latent
variable models, they learn only
from unlabeled data

• They are generative models of
the joint probability p(h, x)

• They correspond to undirected
graphical models

• No links within layers
• The aim is to learn useful

features (h)

*Biases are omitted in the diagrams and the formulas for simplicity.
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The distribution defined by RBMs

x1 h1

x2 h2

x3 h3

x4 h4

W
p(h, x) =

eh
TWx

Z

This calculation is intractable (Z is difficult
to calculate).
But conditional distributions are easy to
calculate

p(h|x) =
∏
j

p(hj|x) =
1

1+ eWjx

p(x|h) =
∏
k

p(xk|h) =
1

1+ eW
T
kh
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Learning in RBMs

• We want to maximize the probability the model assigns to
the input, p(x), or equivalently minimize − log p(x)

• In general, this is computationally expensive
• Contrastive divergence algorithm is a well known algorithm

that efficiently finds an approximate solution
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Autoencoders

x1

x̂1

x2

x̂2

h1

x3

x̂3

h2

x4

x̂4

h3

x5

x̂5

W

W∗

En
co

de
r

D
ec

od
er

• Autoencoders are standard
feed-forward networks

• The main difference is that
they are trained to predict
their input (they try to learn
the identity function)

• The aim is to learn useful
representations of input at the
hidden layer

• Typically weights are tied
(W∗ = WT )
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Under-complete autoencoders

x1 x̂1

x2 x̂2h1

x3 x̂3h2

x4 x̂4h3

x5 x̂5
• An autoencoder is said to be
under-complete if there are
fewer hidden units than
inputs

• The network is forced to learn
a compact representation of
the input (compress)

• An autoencoder with a single
hidden layer approximates
the PCA

• We need multiple layers for
learning non-linear features
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Over-complete autoencoders

h1

h2x1 x̂1

h3x2 x̂2

h4x3 x̂3

h5
• An autoencoder is said to be
over-complete if there are more
hidden units than inputs

• The network can normally
memorize the input perfectly

• This type of networks are
useful if trained with a
regularization term resulting
in sparse hidden units (e.g.,
L1 regularization)
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Denoising autoencoders

x1

x̂1

x2

x2

x̂2

h1

x3

x̂3

h2

x4

x4

x̂4

h3

x5

x5

x̂5

0 0

x

x̃

h

x̂
• Instead of providing the exact

input, we introduce noise by
– randomly setting some

inputs to 0 (dropout)
– adding random (Gaussian)

noise
• Network is still expected to

reconstruct the original input
(without noise)

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2019 46 / 48

Recap Clustering Density estimation PCA Autoencoders

Unsupervised pre-training

• A common use case for RBMs and autoencoders are as
pre-training methods for supervised networks

• Autoencoders or RBMs are trained using unlabeled data
• The weights learned during the unsupervised learning is

used for initializing the weights of a supervised network
• This approach has been one of the reasons for success of

deep networks
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Summary

• In unsupervised learning, we do not have labels. Our aim
is to find/exploit (latent) structure in the data

• Unsupervised methods try to discover ‘hidden’ structure
in the data
Clustering finds groups in the data

Density estimation estimates parameters of latent
probability distributions

Dimensionality reduction transforms the data in a low
dimensional space while keeping most of the
information in the original data

Next:
Mon Artificial neural networks (ANNs)
Wed Deadline for assignment 3, assignment 4 will be out
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Derivation of PCA by maximizing the variance

• We focus on the first PC (z1), which maximizes the
variance of the data onto itself

• We are interested only on the direction, so we choose z1 to
be a unit vector (∥z1∥ = 1)

• Remember that to project a vector onto another, we simply
use dot product, So the projected data points are zxi for
i = 1, . . . ,N.

• The variance of the projected data points (that we want to
maximize) is,

σz1
=

1

N

N∑
i

(z1xi − z1x̄i)
2 = zT1Σz

where Σx is the covariance matrix of the unprojected data
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Derivation of PCA by maximizing the variance (cont.)
• The problem becomes maximize

zT1Σz

with the constraint ∥z1∥ = zT1z1 = 1

• Turning it into a unconstrained optimization problem with
Lagrange multipliers, we minimize

zT1Σz+ λ1(1− zT1z1)

• Taking the derivative and setting it to 0 gives us

Σz1 = λ1z1

Note: by definition, z1 is an eigenvector of Σ, and λ1 is the
corresponding eigenvalue

• z1 is the first principal component, we can now compute
the second principal component with the constraint that it
has to be orthogonal to the first one
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