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Introduction SVD Embeddings Summary

Representations of linguistic units

• Most ML methods we use depend on how we represent the objects of interest,
such as

– words, morphemes
– sentences, phrases
– letters, phonemes
– documents
– speakers, authors
– …

• The way we represent these objects interacts with the ML methods
• We will mostly talk about word representations

– They are also applicable any of the above
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Symbolic (one-hot) representations

A common way to represent words is one-hot vectors
cat = (0, . . . , 1, 0, 0, . . . , 0)

dog = (0, . . . , 0, 1, 0, . . . , 0)

book = (0, . . . , 0, 0, 1, . . . , 0)

. . . x

y

z

cat

dog

book
• No notion of similarity
• Large and sparse vectors
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More useful vector representations

• The idea is to represent similar words with similar vectors
cat = (0, 3, 1, . . . , 4)

dog = (0, 3, 0, . . . , 3)

book = (4, 1, 4, . . . , 5)

. . . x

y

z

dog cat

book
• The similarity between the vectors may represent similarities based on

– syntactic
– semantic
– topical
– form
– … features useful in a particular task
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Where do the vector representations come from?

• The vectors are (almost certainly) learned from the data
• Typically using an unsupervised (or self-supervised) method
• The idea goes back to,

You shall know a word by the company it keeps. —Firth (1957)

• In practice, we make use of the contexts (company) of the words to determine
their representations

• The words that appear in similar contexts are mapped to similar
representations

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2019 4 / 36



Introduction SVD Embeddings Summary

How to calculate word vectors?
count word in context

c1 c2 c3 . . . cm[ ]cat 0 3 1 . . . 4

dog 0 3 0 . . . 3

book 4 1 4 . . . 5

+ Now words that appear in the same contexts will have similar vectors
• The frequencies are often normalized (PMI, TF-IDF)
− The data is highly correlated: lots of redundant information
− Still large and sparse
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How to calculate word vectors?
count, factorize, truncate

c1 c2 c3 . . . cm


w1 0 3 1 . . . 4

w2 0 3 0 . . . 3

w3 4 1 4 . . . 5

. . .

=

z1 z2 z3 . . . zm


w1 1 5 9 . . . 4

w2 1 4 1 . . . 3

w3 9 1 1 . . . 5

. . .




σ1 . . . 0
... . . . ...
0 . . . σm

c1 c2 c3 . . . cm


0 3 1 . . . 4 u1

0 3 0 . . . 3 u2

9 1 8 . . . 0 u3

. . .
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How to calculate word vectors?
predict the context from the word, or word from the context

• The task is predicting
– the context of the word from the

word itself
– or the word from its context

• Task itself is not (necessarily)
interesting

• We are interested in the hidden layer
representations learned

word
dense repr.

context
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How to calculate word vectors?
latent variable models (e.g., LDA)

α θ Z W

β ϕ

D
N

K

• Assume that the each ‘document’ is generated based on a mixture of latent
variables

• Learn the probability distributions
• Typically used for topic modeling (θ)
• Can model words too (ϕ)
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A toy example

A four-sentence corpus with bag of words (BOW) model.

The corpus:
S1: She likes cats and dogs
S2: He likes dogs and cats
S3: She likes books
S4: He reads books

Term-document (sentence) matrix
S1 S2 S3 S4

she 1 0 1 0
he 0 1 0 1
likes 1 1 1 0
reads 0 0 0 1
cats 1 1 0 0
dogs 1 1 0 0
books 0 0 1 1
and 1 1 0 0
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A toy example

A four-sentence corpus with bag of words (BOW) model.

The corpus:
S1: She likes cats and dogs
S2: He likes dogs and cats
S3: She likes books
S4: He reads books

Term-term (left-context) matrix

# sh
e

he lik
es

re
ad

s
ca

ts

do
gs

bo
ok

s
an

d

she 2 0 0 0 0 0 0 0 0
he 2 0 0 0 0 0 0 0 0
likes 0 2 1 0 0 0 0 0 0
reads 0 0 1 0 0 0 0 0 0
cats 0 0 0 1 0 0 0 0 1
dogs 0 0 0 1 0 0 0 0 1
books 0 0 0 1 1 0 0 0 0
and 0 0 0 0 0 1 1 0 0
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Term-document matrices

• The rows are about the terms:
similar terms appear in
similar contexts

• The columns are about the
context: similar contexts
contain similar words

• The term-context matrices are
typically sparse and large

Term-document (sentence) matrix
S1 S2 S3 S4

she 1 0 1 0
he 0 1 0 1
likes 1 1 1 0
reads 0 0 0 1
cats 1 1 0 0
dogs 1 1 0 0
books 0 0 1 1
and 1 1 0 0
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SVD (again)

• Singular value decomposition is a well-known method in linear algebra
• An n×m (n terms m documents) term-document matrix X can be

decomposed as
X = UΣVT

U is a n× r unitary matrix, where r is the rank of X (r ⩽ min(n,m)). Columns of
U are the eigenvectors of XXT

Σ is a r× r diagonal matrix of singular values (square root of eigenvalues of XXT

and XTX)
VT is a r×m unitary matrix. Columns of V are the eigenvectors of XTX

• One can consider U and V as PCA performed for reducing dimensionality of
rows (terms) and columns (documents)
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Truncated SVD

X = UΣVT

• Using eigenvectors (from U and V) that correspond to k largest singular
values (k < r), allows reducing dimensionality of the data with minimum loss

• The approximation,
X̂ = UkΣkVk

results in the best approximation of X, such that ∥X̂− X∥F is minimum
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Truncated SVD

X = UΣVT

• Using eigenvectors (from U and V) that correspond to k largest singular
values (k < r), allows reducing dimensionality of the data with minimum loss

• The approximation,
X̂ = UkΣkVk

results in the best approximation of X, such that ∥X̂− X∥F is minimum
• Note that r and n may easily be millions (of words or contexts), while we

choose k much smaller (a few hundreds)
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Truncated SVD (2)



x1,1 x1,2 x1,3 . . . x1,m
x1,1 x1,2 x1,3 . . . x1,m
x2,1 x2,2 x2,3 . . . x2,m
x3,1 x3,2 x3,3 . . . x3,m
...

...
... . . . ...

xn,1 xn,2 xn,3 . . . xn,m


=


u1,1 . . . u1,k

u2,1 . . . u2,k

u3,1 . . . u3,k
... . . . ...

un,1 . . . un,k

×

σ1 . . . 0
... . . . ...
0 . . . σk

×

v1,1 v1,2 . . . v1,m
...

... . . . ...
vk,1 vk,2 . . . vn,m
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Truncated SVD (2)


x1,1 x1,2 x1,3 . . . x1,m
x1,1 x1,2 x1,3 . . . x1,m
x2,1 x2,2 x2,3 . . . x2,m
x3,1 x3,2 x3,3 . . . x3,m
...

...
... . . . ...

xn,1 xn,2 xn,3 . . . xn,m


=


u1,1 . . . u1,k

u2,1 . . . u2,k

u3,1 . . . u3,k
... . . . ...

un,1 . . . un,k

×

σ1 . . . 0
... . . . ...
0 . . . σk

×

v1,1 v1,2 . . . v1,m
...

... . . . ...
vk,1 vk,2 . . . vn,m


The term1 can be represented using the first row of Uk
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Truncated SVD (2)


x1,1 x1,2 x1,3 . . . x1,m
x1,1 x1,2 x1,3 . . . x1,m
x2,1 x2,2 x2,3 . . . x2,m
x3,1 x3,2 x3,3 . . . x3,m
...

...
... . . . ...

xn,1 xn,2 xn,3 . . . xn,m


=


u1,1 . . . u1,k

u2,1 . . . u2,k

u3,1 . . . u3,k
... . . . ...

un,1 . . . un,k

×

σ1 . . . 0
... . . . ...
0 . . . σk

×

v1,1 v1,2 . . . v1,m
...

... . . . ...
vk,1 vk,2 . . . vn,m


The document1 can be represented using the first column of VT

k

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2019 14 / 36



Introduction SVD Embeddings Summary

Truncated SVD: with a picture

w
or

ds

documents

= × ×

Step 1 Get word-context associations

Step 2 Decompose
Step 3 Truncate
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w
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word vectors document vectors
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Truncated SVD: with a picture

w
or
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documents
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word vectors document vectors

Step 1 Get word-context associations
Step 2 Decompose
Step 3 Truncate
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Truncated SVD example
The corpus:
(S1) She likes cats and dogs
(S2) He likes dogs and cats
(S3) She likes books
(S4) He reads books

S1 S2 S3 S4
she 1 0 1 0
he 0 1 0 1
likes 1 1 1 0
reads 0 0 0 1
cats 1 1 0 0
dogs 1 1 0 0
books 0 0 1 1
and 1 1 0 0

Truncated SVD (k = 2)

U =





−0.30 0.28 she
−0.24 −0.63 he
−0.52 0.15 likes
−0.03 −0.49 reads
−0.43 0.01 cats
−0.43 0.01 dogs
−0.03 −0.49 books
−0.43 0.01 and

Σ =

[
3.11 0

0 1.81

]

VT =

S1 S2 S3 S4[ ]
−0.68 0.26 −0.11 −0.66
−0.66 −0.23 0.48 0.50
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Truncated SVD (with BOW sentence context)

she

he

likes

reads

catsdogs

books

and

The corpus:
(S1) She likes cats and dogs
(S2) He likes dogs and cats
(S3) She likes books
(S4) He reads books

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2019 17 / 36



Introduction SVD Embeddings Summary

Truncated SVD (with single word context)

she

he

likesreads

catsdogs

books

and

The corpus:
(S1) She likes cats and dogs
(S2) He likes dogs and cats
(S3) She likes books
(S4) He reads books
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SVD: LSI/LSA

SVD applied to term-document matrices are called
• Latent semantic analysis (LSA) if the aim is constructing term vectors

– Semantically similar words are closer to each other in the vector space
• Latent semantic indexing (LSI) if the aim is constructing document vectors

– Topicaly related documents are closer to each other in the vector space
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Context matters

In SVD (and other) vector representations, the choice of context matters
• Larger contexts tend to find semantic/topical relationships
• Smaller (also order-sensitive) contexts tend to find syntactic generalizations
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SVD based vectors: practical concerns

• In practice, instead of raw counts of terms within contexts, the
term-document matrices typically contain

– pointwise mutual information
– tf-idf

• If the aim is finding latent (semantic) topics, frequent/syntactic words
(stopwords) are often removed

• Depending on the measure used, it may also be important to normalize for
the document length
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SVD-based vectors: applications

• The SVD-based methods are commonly used in information retrieval
– The system builds document vectors using SVD
– The search terms are also considered as a ‘document’
– System retrieves the documents whose vectors are similar to the search term

• The well known Google PageRank algorithm is a variation of the SVD

In this context, the results is popularly called
“the $25 000 000 000 eigenvector”.
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SVD-based vectors: applications
• The SVD-based methods for semantic similarity is also common
• It was shown that the vector space models outperform humans in

– TOEFL synonym questions
Receptors for the sense of smell are located at the top of the nasal cavity.

A. upper end B. inner edge C. mouth D. division
– SAT analogy questions

Paltry is to significance as is to .
A. redundant : discussion
B. austere : landscape
C. opulent : wealth
D. oblique : familiarity
E. banal : originality

• In general the SVD is a very important method in many fields
the song
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Predictive models

• Instead of dimensionality reduction through SVD, we try to predict
– either the target word from the context
– or the context given the target word

• We assign each word to a fixed-size random vector
• We use a standard ML model and try to reduce the prediction error with a

method like gradient descent
• During learning, the algorithm optimizes the vectors as well as the model

parameters
• In this context, the word-vectors are called embeddings
• This types of models have become very popular in the last few years
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Predictive models

• The idea is the ‘locally’ predict the context a particular word occurs
• Both the context and the words are represented as low dimensional dense

vectors
• Typically, neural networks are used for the prediction
• The hidden layer representations are the vectors we are interested
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word2vec

• word2vec is a popular algorithm and open source application for training
word vectors (Mikolov et al. 2013)

• It has two modes of operation
CBOW or continuous bag of words predict the word using a window around the word

Skip-gram does the reverse, it predicts the words in the context of the target word using the
target word as the predictor

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2019 26 / 36



Introduction SVD Embeddings Summary

word2vec
CBOW and skip-gram modes – conceptually

w−2

w−1

w1

w2

w

context

embedding target word

CBOW

w

w−2

w−1

w1

w2

context

embeddingtarget word

Skip-gram
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word2vec
a bit more in detail

• For each word w algorithm learns two sets of embeddings
vw for words
cw for contexts

• Objective of the learning is to maximize (skip-gram)

P(c |w) =
evw·cc∑

c ′∈c e
cc ′vw

Note that the above is simply softmax – the learning method is equivalent to
logistic regression

• Now, we can use gradient-based approaches to find word and context vectors
that maximize this objective
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Issues with softmax

P(c |w) =
evw·cc∑

c ′∈c e
cc ′vw

• A particular problem with models with a softmax output is high
computational cost:

– For each instance in the training data denominator need to be calculated over the
whole vocabulary (can easily be millions)

• Two workarounds exist:
– Negative sampling: a limited number of negative examples (sampled from the

corpus) are used to calculate the denominator
– Hierarchical softmax: turn output layer to a binary tree, where probability of a

word equals to the probability of the path followed to find the word
• Both methods are applicable to training, during prediction, we still need to

compute the full softmax

Ç. Çöltekin, SfS / University of Tübingen Summer Semester 2019 29 / 36



Introduction SVD Embeddings Summary

word2vec: some notes

• Note that word2vec is not ‘deep’
• word2vec preforms well, and it is much faster than earlier (more complex)

ANN architectures developed for this task
• The resulting vectors used by many (deep) ANN models, but they can also be

used by other ’traditional’ methods
• word2vec treats the context as a BoW, hence vectors capture (mainly)

semantic relationships
• There are many alternative formulations
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Word vectors and syntactic/semantic relations

Word vectors map some
syntactic/semantic relations to vector
operations

• Paris - France + Italy = Rome
• king - man + woman = queen

• ducks - duck + mouse = mice

Paris

France

Rome

Italy
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Other methods for building vector representations

• There (quite) a few other popular methods for building vector representations
• GloVe tries to combine local information (similar to word2vec) with global

information (similar to SVD)
• FastText makes use of characters (n-grams) within the word as well as their

context
• Recnetly some models of ‘embeding in context’ become popular
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Using vector representations

• Dense vector representations are useful for many ML methods
• They are particularly suitable for neural network models
• ‘General purpose’ vectors can be trained on unlabeled data
• They can also be trained for a particular purpose, resulting in ‘task specific’

vectors
• Dense vector representations are not specific to words, they can be obtained

and used for any (linguistic) object of interest
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Evaluating vector representations

• Like other unsupervised methods, there are no ‘correct’ labels
• Evaluation can be

Intrinsic based on success on finding analogy/synonymy
Extrinsic based on whether they improve a particular task (e.g., parsing, sentiment

analysis)
– Correlation with human judgments
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Differences of the methods
…or the lack thereof

• It is often claimed, after excitement created by word2vec, that
prediction-based models work better

• Careful analyses suggest, however, that word2vec can be seen as an
approximation to a special case of SVD

• Performance differences seem to boil down to how well the hyperparameters
are optimized

• In practice, the computational requirements are probably the biggest
difference
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Summary

• Dense vector representations of linguistic units (as opposed to symbolic
representations) allow calculating similarity/difference between the units

• They can be either based on counting (SVD), or predicting (word2vec, GloVe)
• They are particularly suitable for ANNs, deep learning architectures

Next:
Mon Text classification
Fri Parsing
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Additional reading, references, credits

• Upcoming edition of the textbook (Jurafsky and Martin 2009, ch.15 and ch.16)
has two chapters covering the related material.

• See Levy, Goldberg, and Dagan (2015) for a comparison of different ways of
obtaining embeddings.

Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition. second. Pearson Prentice Hall. isbn: 978-0-13-504196-3.

Levy, Omer, Yoav Goldberg, and Ido Dagan (2015). “Improving distributional similarity with lessons learned from word embeddings”. In: Transactions
of the Association for Computational Linguistics 3, pp. 211–225.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013). “Efficient Estimation of Word Representations in Vector Space”. In: CoRR
abs/1301.3781. url: http://arxiv.org/abs/1301.3781.
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