Links to the course material will be provided in the schedule below after each class. You may want to have a look at the previous edition of the course for reference.

The course schedule

Week Monday Wednesday Friday
01 Apr 15
No class
Apr 17
Introduction 
[slides, 8up]
Reading: None
Apr 19
No class
02 Apr 22
No class
Apr 24
Math preliminaries 
[slides, 8up]
Reading: None
Apr 26
Probability theory 
[slides, 8up]
Reading: None
03 Apr 29
Probability theory (contd.) 
May 01
No class
May 03
Information theory 
[slides, 8up]
04 May 06
Machine learning intro 
[slides, 8up]
Reading: HTF 3.2 & 3.4
May 08
lab - Assignment 1 
[recap slides (05.06)]
May 10
Classification I 
[slides, 8up]
Reading: JM 6.6 (JM3 Ch.7), HTF 4.4
05 May 13
Classification II 
May 15
lab 
May 17
ML evaluation 
[slides, 8up]
06 May 20
ANN basics 
[slides, 8up]
Reading: JM3 Ch.7, HTF Ch.11
May 22
lab - Assignment 2 
May 24
ANN basics 
07 May 27
Unsupervised learning 
[slides, 8up]
Reading: HTF Ch.14
May 29
lab 
May 31
Unsuprevised learning 
08 Jun 03
Unsupervised learning 
Jun 05
lab - Assignment 3 
Jun 07
Sequence learning 
[slides, 8up]
Jun 11
Sem. break
Jun 13
Sem. break
Jun 15
Sem. break
09 Jun 17
Recurrent and convolutional networks 
[slides, 8up]
Jun 19
lab - Assignment 4 
Jun 21
Language models 
[slides, 8up]
10 Jun 24
Tokenization / segmentation 
[slides, 8up]
Jun 26
lab 
Jun 28
POS tagging 
[slides, 8up]
11 Jul 01
Dense vector representations 
[slides, 8up]
Jul 03
lab - Assignment 5 
Jul 05
Dense vector representations 
12 Jul 08
Text classification 
[slides, 8up]
Jul 10
lab 
Jul 13
Parsing I 
[slides, 8up]
11 Jul 15
Parsing II 
Jul 17
lab - Assignment 6 
Jul 19
Summary 
[slides, 8up]
14 Jul 22
Exam preparation/discussion 
Jul 24
lab - Assignment 7 
Jul 26
Exam